Publications by authors named "Arthur Kuipers"

Therapeutic antibodies (Abs) which act on a broader range of epitopes may provide more durable protection against the genetic drift of a target, typical of viruses or tumors. When these Abs exist concurrently on the targeted antigen, several mechanisms of action (MoAs) can be engaged, boosting therapeutic potency. This study selected combinations of four and five Abs with non- or partially overlapping epitopes to the SARS-CoV-2 spike glycoprotein, on or outside the crucial receptor binding domain (RBD), to offer resilience to emerging variants and trigger multiple MoAs.

View Article and Find Full Text PDF

Mechanically induced signaling pathways are important drivers of tumor progression. However, if and how mechanical signals affect metastasis or therapy response remains poorly understood. We previously found that the channel-kinase TRPM7, a regulator of cellular tension implicated in mechano-sensory processes, is required for breast cancer metastasis in vitro and in vivo.

View Article and Find Full Text PDF

Dendritic cell (DC) migration is essential for efficient host defense against pathogens and cancer, as well as for the efficacy of DC-based immunotherapies. However, the molecules that induce the migratory phenotype of DCs are poorly defined. Based on a large-scale proteome analysis of maturing DCs, we identified the GPI-anchored protein semaphorin 7A (Sema7A) as being highly expressed on activated primary myeloid and plasmacytoid DCs in human and mouse.

View Article and Find Full Text PDF

Neuroblastoma is an embryonal tumor derived from poorly differentiated neural crest cells. Current research is aimed at identifying the molecular mechanisms that maintain the progenitor state of neuroblastoma cells and to develop novel therapeutic strategies that induce neuroblastoma cell differentiation. Mechanisms controlling neural crest development are typically dysregulated during neuroblastoma progression, and provide an appealing starting point for drug target discovery.

View Article and Find Full Text PDF
Article Synopsis
  • Kleefstra syndrome (KS) is caused by a lack of the EHMT1 enzyme and leads to intellectual disabilities, growth delays, and unique facial features.
  • Researchers studied mice with a similar EHMT1 deficiency to see if they showed signs of KS, and found that these mice had growth delays, weak muscles, and facial features like those seen in KS.
  • The study showed that changes in certain genes related to bone growth were linked to the mice’s unusual facial shapes, suggesting that studying these mice can help us understand KS better.
View Article and Find Full Text PDF

TRPM7 encodes a Ca2+-permeable nonselective cation channel with kinase activity. TRPM7 has been implicated in control of cell adhesion and migration, but whether TRPM7 activity contributes to cancer progression has not been established. Here we report that high levels of TRPM7 expression independently predict poor outcome in breast cancer patients and that it is functionally required for metastasis formation in a mouse xenograft model of human breast cancer.

View Article and Find Full Text PDF

The ability of cells to respond to mechanical stimulation is crucial to a variety of biological processes, including cell migration, axonal outgrowth, perception of pain, cardiovascular responses and kidney physiology. The translation of mechanical cues into cellular responses, a process known as mechanotransduction, typically takes place in specialized multiprotein structures such as cilia, cell-cell or cell-matrix adhesions. Within these structures, mechanical forces such as shear stress and membrane stretch activate mechanosensitive proteins, which set off a series of events that lead to altered cell behavior.

View Article and Find Full Text PDF

The 9q34.3 subtelomeric deletion syndrome is a newly defined mental retardation syndrome, caused by haplo-insufficiency of the euchromatin histone methyltransferase 1 (EHMT1) gene. Patients also have childhood hypotonia, facial dysmorphisms, delay in reaching developmental milestones, and behavioral problems like aggressive outbursts, hypoactivity, or autistic-like features.

View Article and Find Full Text PDF

Several different integrins participate in the complex interactions that promote repair of the peripheral nervous system. The role of the integrin alpha6beta4 in peripheral nerve regeneration was investigated in mice by cre-mediated deletion of the Itgb4 (beta4) gene in Schwann cells. After a crush lesion of the sciatic nerve, the recovery of motor, but not that of sensory, nerve function in beta4(-/-) mice was delayed.

View Article and Find Full Text PDF