Locomotion of soft robots typically relies on control of multiple inflatable actuators by electronic computers and hard valves. Soft pneumatic oscillators can reduce the demand on controllers by generating complex movements required for locomotion from a single, constant input pressure, but either have been constrained to low rates of flow of air or have required complex fabrication processes. Here, we describe a pneumatic oscillator fabricated from flexible, but inextensible, sheets that provides high rates of airflow for practical locomotion by combining three instabilities: out-of-plane buckling of the sheets, kinking of tubing attached to the sheets, and a system-level instability resulting from connection of an odd number of pneumatic inverters made from these sheets in a loop.
View Article and Find Full Text PDF