The complement system plays a critical role in the innate immune response, acting as a first line of defense against invading pathogens. However, dysregulation of the complement system is implicated in the pathogenesis of numerous diseases, ranging from Alzheimer's to age-related macular degeneration and rare blood disorders. As such, complement inhibitors have enormous potential to alleviate disease burden.
View Article and Find Full Text PDFThe epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene.
View Article and Find Full Text PDFRecent years have seen a resurgence in drug discovery efforts aimed at the identification of covalent inhibitors which has led to an explosion of literature reports in this area and most importantly new approved therapies. These reports and breakthroughs highlight the significant investments made across the industry in SAR campaigns to optimize inhibitors. The potency of covalent inhibitors is generally considered to be more accurately described by the time-independent kinetic parameter k/K rather than a by a simple IC since the latter is a time-dependent parameter.
View Article and Find Full Text PDFAccess to cryptic binding pockets or allosteric sites on a kinase that present themselves when the enzyme is in a specific conformational state offers a paradigm shift in designing the next generation small molecule kinase inhibitors. The current work showcases an extensive and exhaustive array of in vitro biochemical and biophysical tools and techniques deployed along with structural biology efforts of inhibitor-bound kinase complexes to characterize and confirm the cryptic allosteric binding pocket and docking mode of the small molecule actives identified for hTrkA. Specifically, assays were designed and implemented to lock the kinase in a predominantly active or inactive conformation and the effect of the kinase inhibitor probed to understand the hTrkA binding and hTrkB selectivity.
View Article and Find Full Text PDFPotent covalent inhibitors of Bruton's tyrosine kinase (BTK) based on an aminopyrazole carboxamide scaffold have been identified. Compared to acrylamide-based covalent reactive groups leading to irreversible protein adducts, cyanamide-based reversible-covalent inhibitors provided the highest combined BTK potency and EGFR selectivity. The cyanamide covalent mechanism with BTK was confirmed through enzyme kinetic, NMR, MS, and X-ray crystallographic studies.
View Article and Find Full Text PDFThe Janus kinase (JAK) family consists of four members: JAK-1, -2, -3 and tyrosine kinase 2 (TYK-2). Recent work suggests that cytokine signaling through TYK-2 may play a critical role in a number of inflammatory processes. We recently described the purification and characterization of phosphorylated isoforms of the TYK-2 kinase domain (TYK-2 KD) and its high resolution 3D structure in the presence of inhibitors.
View Article and Find Full Text PDFSphK (sphingosine kinase) is the major source of the bioactive lipid and GPCR (G-protein-coupled receptor) agonist S1P (sphingosine 1-phosphate). S1P promotes cell growth, survival and migration, and is a key regulator of lymphocyte trafficking. Inhibition of S1P signalling has been proposed as a strategy for treatment of inflammatory diseases and cancer.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) is one of the main enzymes responsible for the degradation of the endocannabinoid anandamide (N-arachidonoylethanolamine, AEA). FAAH inhibitors may be useful in treating many disorders involving inflammation and pain. Although brain FAAH may be the relevant target for inhibition, rat studies show a correlation between blood and brain FAAH inhibition, allowing blood FAAH activity to be used as a target biomarker.
View Article and Find Full Text PDFImidazo[1,5-a]quinoxalines were synthesized that function as irreversible Bruton's tyrosine kinase (BTK) inhibitors. The syntheses and SAR of this series of compounds are presented as well as the X-ray crystal structure of the lead compound 36 in complex with a gate-keeper variant of ITK enzyme. The lead compound showed good in vivo efficacy in preclinical RA models.
View Article and Find Full Text PDFBecause of their central role in programmed cell death, the caspases are attractive targets for developing new therapeutics against cancer and autoimmunity, myocardial infarction and ischemic damage, and neurodegenerative diseases. We chose to target caspase-3, an executioner caspase, and caspase-8, an initiator caspase, based on the vast amount of information linking their functions to diseases. Through a structure-based drug design approach, a number of novel beta-strand peptidomimetic compounds were synthesized.
View Article and Find Full Text PDFThe Janus kinase family consists of four members: JAK-1, -2, -3 and TYK-2. While JAK-2 and JAK-3 have been well characterized biochemically, there is little data on TYK-2. Recent work suggests that TYK-2 may play a critical role in the development of a number of inflammatory processes.
View Article and Find Full Text PDFPotent, highly selective and orally-bioavailable MMP-13 inhibitors have been identified based upon a (pyridin-4-yl)-2H-tetrazole scaffold. Co-crystal structure analysis revealed that the inhibitors bind at the S(1)(') active site pocket and are not ligands for the catalytic zinc atom. Compound 29b demonstrated reduction of cartilage degradation biomarker (TIINE) levels associated with cartilage protection in a preclinical rat osteoarthritis model.
View Article and Find Full Text PDFSeveral inhibitors of a series of cis-1(S)2(R)-amino-2-indanol-based compounds were reported to be selective for the aggrecanases, ADAMTS-4 and -5 over other metalloproteases. To understand the nature of this selectivity for aggrecanases, the inhibitors, along with the broad spectrum metalloprotease inhibitor marimastat, were independently bound to the catalytic domain of ADAMTS-5, and the corresponding crystal structures were determined. By comparing the structures, it was determined that the specificity of the relative inhibitors for ADAMTS-5 was not driven by a specific interaction, such as zinc chelation, hydrogen bonding, or charge interactions, but rather by subtle and indirect factors, such as water bridging, ring rigidity, pocket size, and shape, as well as protein conformation flexibility.
View Article and Find Full Text PDFADAMTS-4 (aggrecanase-1) is implicated in the breakdown of articular cartilage and is an attractive target for therapeutic intervention in arthritis. Cleavage of the native substrate, aggrecan, occurs through exosite interactions and peptide sequence recognition. Although expected to be competitive with aggrecan, the hydroxamic acid, SC81956, demonstrated noncompetitive inhibition kinetics with a Ki of 23 nM.
View Article and Find Full Text PDFOsteoarthritis is characterized by the loss of aggrecan and collagen from the cartilage extracellular matrix. The proteinases responsible for the breakdown of cartilage aggrecan include ADAMTS-4 (aggrecanase 1) and ADAMTS-5 (aggrecanase 2). Post-translational inhibition of ADAMTS-4/-5 activity may be important for maintaining normal homeostasis of aggrecan metabolism, and thus, any disruption to this inhibition could lead to accelerated aggrecan breakdown.
View Article and Find Full Text PDFThe kinetic mechanism of mitogen-activated protein kinase activated protein kinase-2 (MAPKAPK2) was investigated using a peptide (LKRSLSEM) based on the phosphorylation site found in serum response factor (SRF). Initial velocity studies yielded a family of double-reciprocal lines that appear parallel and indicative of a ping-pong mechanism. The use of dead-end inhibition studies did not provide a definitive assignment of a reaction mechanism.
View Article and Find Full Text PDFHerpesviruses encode a protease that is essential for virus replication. The protease undergoes cleavage to a processed form during capsid maturation. A recombinant 75 kDa form of the protease from human cytomegalovirus was purified and compared with the recombinant 29 kDa processed form.
View Article and Find Full Text PDF