Publications by authors named "Arthur J Blume"

Insulin is thought to elicit its effects by crosslinking the two extracellular alpha-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked.

View Article and Find Full Text PDF

BACKGROUND: Hotspots are defined as the minimal functional domains involved in protein:protein interactions and sufficient to induce a biological response. RESULTS: Here we describe the use of complex and high diversity phage display libraries to isolate peptides (called Hotspot Ligands or HSPLs) which sub-divide the ligand binding domain of the tumor necrosis factor receptor 2 (TNFR2; p75) into multiple hotspots. We have shown that these libraries could generate HSPLs which not only subdivide hotspots on protein and non-protein targets but act as agonists or antagonists.

View Article and Find Full Text PDF

After the successful completion of the human genome project, mapping of the human proteome has become the next important challenge facing the biotech and pharmaceutical industries. Identification of the 'right' target(s) is now a critical part of the process because of the cost of drug discovery. Compounding this situation is the fact that the pharmaceutical industry faces a further challenge of being able to sustain current and historical growth rates.

View Article and Find Full Text PDF

We used phage display to generate surrogate peptides that define the hotspots involved in protein-protein interaction between insulin and the insulin receptor. All of the peptides competed for insulin binding and had affinity constants in the high nanomolar to low micromolar range. Based on competition studies, peptides were grouped into non-overlapping Sites 1, 2, or 3.

View Article and Find Full Text PDF