The physiology of vascular smooth muscle (VSMC) cells is affected by autophagy, a catabolic cellular mechanism responsible for nutrient recycling. Autophagy-inducing compounds may reverse arterial stiffening, whereas congenital VSMC-specific autophagy deficiency promotes arterial stiffening. The elevated aortic stiffness in 3.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2021
Endothelial cells (ECs) secrete different paracrine signals that modulate the function of adjacent cells; two examples of these paracrine signals are nitric oxide (NO) and neuregulin-1 (NRG1), a cardioprotective growth factor. Currently, it is undetermined whether one paracrine factor can compensate for the loss of another. Herein, we hypothesized that NRG1 can compensate for endothelial NO synthase (eNOS) deficiency.
View Article and Find Full Text PDFAging and associated progressive arterial stiffening are both important predictors for the development of cardiovascular diseases. Recent evidence showed that autophagy, a catabolic cellular mechanism responsible for nutrient recycling, plays a major role in the physiology of vascular cells such as endothelial cells and vascular smooth muscle cells (VSMCs). Moreover, several autophagy inducing compounds are effective in treating arterial stiffness.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
May 2020
An important physiological role of the aorta is to convert the pulsatile blood flow that originates in the heart to a nearly continuous flow in the peripheral vessels. Previously, we demonstrated that basal, unstimulated nitric oxide (NO) production is more abundant in large as compared with muscular arteries and that it is an important regulator of arterial (aortic) stiffness. Hence, endothelial function and NO bioavailability are important determinants of aortic biomechanics, and mouse models with altered NO signaling might be of interest to investigate the (patho)physiological role of the NO signaling as a dynamic regulator of arterial stiffness.
View Article and Find Full Text PDFOver the past few decades, isometric contraction studies of isolated thoracic aorta segments have significantly contributed to our overall understanding of the active, contractile properties of aortic vascular smooth muscle cells (VSMCs) and their cross-talk with endothelial cells. However, the physiological role of VSMC contraction or relaxation in the healthy aorta and its contribution to the pulse-smoothening capacity of the aorta is currently unclear. Therefore, we investigated the acute effects of VSMC contraction and relaxation on the isobaric biomechanical properties of healthy mouse aorta.
View Article and Find Full Text PDFInduction of hypertension by angiotensin II (AngII) is a widely used experimental stimulus to study vascular aging in mice. It is associated with large artery stiffness, a hallmark of arterial aging and a root cause of increased cardiovascular risk. We reported earlier that long term (4 week) AngII treatment in mice altered the active, contractile properties of the arteries in a vascular bed-specific manner and that, in healthy mice aorta, active contractile properties of the aortic wall determine isobaric aortic stiffness.
View Article and Find Full Text PDFKey Points: Cyclic stretch is known to alter intracellular pathways involved in vessel tone regulation. We developed a novel set-up that allows straightforward characterization of the biomechanical properties of the mouse aorta while stretched at a physiological heart rate (600 beats min ). Active vessel tone was shown to have surprisingly large effects on isobaric stiffness.
View Article and Find Full Text PDFIn the last decades, the search for mechanisms underlying progressive arterial stiffening and for interventions to avoid or reverse this process has gained much attention. In general, arterial stiffening displays regional variation and is, for example, during aging more prominent in elastic than in muscular arteries. We hypothesize that besides passive also active regulators of arterial compliance [i.
View Article and Find Full Text PDFArterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks).
View Article and Find Full Text PDFL-type Ca2+ channel (VGCC) mediated Ca2+ influx in vascular smooth muscle cells (VSMC) contributes to the functional properties of large arteries in arterial stiffening and central blood pressure regulation. How this influx relates to steady-state contractions elicited by α1-adrenoreceptor stimulation and how it is modulated by small variations in resting membrane potential (Vm) of VSMC is not clear yet. Here, we show that α1-adrenoreceptor stimulation of aortic segments of C57Bl6 mice with phenylephrine (PE) causes phasic and tonic contractions.
View Article and Find Full Text PDFArterial stiffening is the root cause of a range of cardiovascular complications, including myocardial infarction, left ventricular hypertrophy, stroke, renal failure, dementia, and death, and a hallmark of the aging process. The most important in vivo parameter of arterial stiffness is pulse wave velocity (PWV). Clinically, PWV is determined noninvasively using applanation tonometry.
View Article and Find Full Text PDF