Publications by authors named "Arthur H Robbins"

The phosphoinositide 3-kinase (PI3K) pathway is aberrantly activated in many disease states, including tumor cells, either by growth factor receptor tyrosine kinases or by the genetic mutation and amplification of key pathway components. A variety of PI3K isoforms play differential roles in cancers. As such, the development of PI3K inhibitors from novel compound classes should lead to differential pharmacological and pharmacokinetic profiles and allow exploration in various indications, combinations, and dosing regimens.

View Article and Find Full Text PDF

The rodent malaria parasite Plasmodium berghei is a practical model organism for experimental studies of human malaria. Plasmepsins are a class of aspartic proteinase isoforms that exert multiple pathological effects in malaria parasites. Plasmepsins residing in the food vacuole (FV) of the parasite hydrolyze hemoglobin in red blood cells.

View Article and Find Full Text PDF

Although widely distributed in Nature, only two γ class carbonic anhydrases are reported besides the founding member (Cam). Although roles for active-site residues important for catalysis have been identified in Cam, second shell residues have not been investigated. Two residues (Trp19 and Tyr200), positioned distant from the catalytic metal, were investigated by structural and kinetic analyses of replacement variants.

View Article and Find Full Text PDF

This work examines the effect of perturbing the position of bound CO(2) in the active site of human carbonic anhydrase II (HCA II) on catalysis. Variants of HCA II in which Val143 was replaced with hydrophobic residues Ile, Leu, and Ala were examined. The efficiency of catalysis in the hydration of CO(2) for these variants was characterized by (18)O exchange mass spectrometry, and their structures were determined by X-ray crystallography at 1.

View Article and Find Full Text PDF

The tryptophan residue Trp5, highly conserved in the α class of carbonic anhydrases including human carbonic anhydrase II (HCA II), is positioned at the entrance of the active site cavity and forms a π-stacking interaction with the imidazole ring of the proton shuttle His64 in its outward orientation. We have observed that replacement of Trp5 in HCA II caused significant structural changes, as determined by X-ray diffraction, in the conformation of 11 residues at the N-terminus and in the orientation of the proton shuttle residue His64. Most significantly, two variants W5H and W5E HCA II had His64 predominantly outward in orientation, while W5F and wild type showed the superposition of both outward and inward orientations in crystal structures.

View Article and Find Full Text PDF

Clamp loaders load ring-shaped sliding clamps onto DNA. Once loaded onto DNA, sliding clamps bind to DNA polymerases to increase the processivity of DNA synthesis. To load clamps onto DNA, an open clamp loader-clamp complex must form.

View Article and Find Full Text PDF

Reaction of cyanuryl chloride with d,l-amino acids and amino alcohols afforded a new series of triazinyl-substituted benzenesulfonamides incorporating amino acyl/hydroxyalkyl-amino moieties. Inhibition studies of physiologically relevant human carbonic anhydrase (CA, EC 4.2.

View Article and Find Full Text PDF

Aromatic amides comprising branched aliphatic carboxylic acids and 4-aminobenzenesulfonamide were evaluated for their inhibition of carbonic anhydrase (CA) isoforms. Of the most anticonvulsant-active compounds (2, 4, 13, 16, and 17), only 13, 16, and 17 were potent inhibitors of CAs VII and XIV. Compounds 9, 14, and 19 inhibited CA II, while 10 and 12 inhibited all isoforms.

View Article and Find Full Text PDF

The crystal structure of human carbonic anhydrase II in the monoclinic P2(1) space group with a doubled a axis from that of the usually observed unit cell has recently been reported, with one of the two molecules in the asymmetric unit demonstrating rotational disorder [Robbins et al. (2010), Acta Cryst. D66, 628-634].

View Article and Find Full Text PDF

The crystal structure of human carbonic anhydrase II with a doubled a axis from that of the usually observed monoclinic unit cell has been determined and refined to 1.4 A resolution. The diffraction data with h = 2n + 1 were systematically weaker than those with h = 2n.

View Article and Find Full Text PDF

The crystal structure of the unbound form of HIV-1 subtype A protease (PR) has been determined to 1.7 A resolution and refined as a homodimer in the hexagonal space group P6(1) to an R(cryst) of 20.5%.

View Article and Find Full Text PDF

The crystal structure of human carbonic anhydrase II (CA II) complexed with the inhibitor acetazolamide (AZM) has been determined at 1.1 A resolution and refined to an R(cryst) of 11.2% and an R(free) of 14.

View Article and Find Full Text PDF

A mutated form of truncated proplasmepsin 1 (proPfPM1) from the human malaria parasite Plasmodium falciparum, proPfPM1 K110pN, was generated and overexpressed in Escherichia coli. The automaturation process was carried out at pH 4.0 and 4.

View Article and Find Full Text PDF

The carboxylate atoms of the two catalytic aspartic acid residues in aspartic proteases are nearly coplanar and in the uncomplexed form share an in-plane nucleophilic water molecule that is central to the mechanism of these enzymes. This note reports that while reviewing the electron-density maps derived from the deposited data for uncomplexed plasmepsin II from Plasmodium falciparum [Asojo et al. (2003), J.

View Article and Find Full Text PDF

The Mycoplasma hyorhinis protein p37 has been implicated in tumorigenic transformation for more than 20 years. Though there are many speculations as to its function, based solely on sequence homology, the issue has remained unresolved. Presented here is the 1.

View Article and Find Full Text PDF

The crystal structure of the Mycoplasma hyorhinis protein Mh-p37 has been solved and refined to 1.9 A resolution. This is the first de novo structure to be determined using the recently described heavy-atom reagent [Beck et al.

View Article and Find Full Text PDF

The X-ray crystal structure of the unbound state of human immunodeficiency virus 1 (HIV-1) subtype C protease (C PR) has been determined to 1.20 angstroms resolution in the tetragonal space group P4(1)2(1)2, with one monomer per asymmetric unit and unit-cell parameters a = 46.7, c = 100.

View Article and Find Full Text PDF

Fourteen subtype B and C protease variants have been engineered in an effort to study whether the preexistent baseline polymorphisms, by themselves or in combination with drug resistance mutations, differentially alter the biochemical and structural features of the subtype C protease when compared with those of subtype B protease. The kinetic studies performed in this work showed that the preexistent polymorphisms in subtype C protease, by themselves, do not provide for a greater level of resistance. Inhibition analysis with eight clinically used protease inhibitors revealed that the natural polymorphisms found in subtype C protease, in combination with drug resistance mutations, can influence enzymatic catalytic efficiency and inhibitor resistance.

View Article and Find Full Text PDF