Nitric Oxide
June 2024
Nitric oxide (NO) acts in different physiological processes, such as blood pressure control, antiparasitic activities, neurotransmission, and antitumor action. Among the exogenous NO donors, ruthenium nitrosyl/nitro complexes are potential candidates for prodrugs, due to their physicochemical properties, such as thermal and physiological pH stability. In this work, we proposed the synthesis and physical characterization of the new nitro terpyridine ruthenium (II) complexes of the type [Ru(L)(NO)(tpy)]PF where tpy = 2,2':6',2″-terpyridine; L = 3,4-diaminobenzoic acid (bdq) or o-phenylenediamine (bd) and evaluation of influence of diimine bidentate ligand NH.
View Article and Find Full Text PDFThe industrial uses of peptidases have already been consolidated; however, their range of applications is increasing. Thus, the biochemical characterization of new peptidases could increase the range of their biotechnological applications. In silico analysis identified a gene encoding a putative serine peptidase from Purpureocillium lilacinum (Pl_SerPep), annotated as a cuticle-degrading enzyme.
View Article and Find Full Text PDFBiotechnol Biofuels Bioprod
January 2023
Cellulose is the most abundant polysaccharide in lignocellulosic biomass, where it is interlinked with lignin and hemicellulose. Bioethanol can be produced from biomass. Since breaking down biomass is difficult, cellulose-active enzymes secreted by filamentous fungi play an important role in degrading recalcitrant lignocellulosic biomass.
View Article and Find Full Text PDFβ-glucosidases catalyze the hydrolysis β-1,4, β-1,3 and β-1,6 glucosidic linkages from non-reducing end of short chain oligosaccharides, alkyl and aryl β-D-glucosides and disaccharides. They catalyze the rate-limiting reaction in the conversion of cellobiose to glucose in the saccharification of cellulose for second-generation ethanol production, and due to this important role the search for glucose tolerant enzymes is of biochemical and biotechnological importance. In this study we characterize a family 3 glycosyl hydrolase (GH3) β-glucosidase (Bgl) produced by Malbranchea pulchella (MpBgl3) grown on cellobiose as the sole carbon source.
View Article and Find Full Text PDFThe filamentous fungus produced extracellular antifungal chitinase when cultured under submerged fermentation (SbmF) using crab shells as the carbon source. Maximal chitinase production was achieved at 192 h of cultivation using minimal medium containing 1% chitin. The enzyme was purified 1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2017
Food Chem
June 2017
For a long time, proteolytic enzymes have been employed as key tools of industrial processes, especially in the dairy industry. In the present work, we used Phanerochaete chrysosporium for biochemical characterization and analysis of catalytic specificity of an aspartic peptidase. Our results revealed an aspartic peptidase with molecular mass ∼38kDa, maximal activity at pH 4.
View Article and Find Full Text PDFThe use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
August 2016
In this study, we detail the specificity of an aspartic peptidase from Rhizomucor miehei and evaluate the effects of this peptidase on clotting milk using the peptide sequence of k-casein (Abz-LSFMAIQ-EDDnp) and milk powder. Molecular mass of the peptidase was estimated at 37 kDa, and optimum activity was achieved at pH 5.5 and 55 °C.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2016
Nucleoside triphosphate diphosphohydrolase (NTPDase) is an enzyme belonging to the apyrase family that participates in the hydrolysis of the nucleosides di- and triphosphate to the corresponding nucleoside monophosphate. This enzyme underlies the virulence of parasites such as Leishmania. Recently, an NTPDase from Leishmania infantum (LicNTPDase-2) was cloned and expressed and has been considered as a new drug target for the treatment of leishmaniasis.
View Article and Find Full Text PDFCurr Microbiol
February 2016
The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M.
View Article and Find Full Text PDFNucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. Moreover, it is secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions.
View Article and Find Full Text PDFBackground: Leishmaniasis is a complex disease in which clinical outcome depends on factors such as parasite species, host genetics and immunity and vector species. In Brazil, Leishmania (Viannia) braziliensis is a major etiological agent of cutaneous (CL) and mucosal leishmaniasis (MCL), a disfiguring form of the disease, which occurs in ~10% of L. braziliensis-infected patients.
View Article and Find Full Text PDFProteases hydrolyze polypeptides to release peptides and/or amino acids. This subclass of enzymes is among those with the most sales worldwide, particularly those produced by microorganisms. Proteases may be applied in the several industries, including the food industry, leather, detergents, and bioremediation.
View Article and Find Full Text PDFBackground: Nucleoside diphosphate kinase (NDK) is a housekeeping enzyme that plays key roles in nucleotide recycling and homeostasis in trypanosomatids. It is also secreted by the intracellular parasite Leishmania to modulate the host response. These functions make NDK an attractive target for drug design and for studies aiming at a better understanding of the mechanisms mediating host-pathogen interactions.
View Article and Find Full Text PDFProtein Pept Lett
July 2014
Aspergillus fumigatus is a saprophytic fungus as well as a so-called opportunist pathogen. Its biochemical potential and enzyme production justify intensive studies about biomolecules secreted by this microorganism. We describe the alkaline serine peptidase production, with optimum activity at 50°C and a pH of 7.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
November 2009
Nucleoside diphosphate kinases (NDKs; EC 2.7.4.
View Article and Find Full Text PDFBothropstoxin-I (BthTx-I), a Lys49-PLA(2) from Bothrops jararacussu venom, permeabilizes membranes by a non-hydrolytic Ca(2+)-independent mechanism. The BthTx-I showed activity against liposomes including 10% and 50% negatively charged lipids at pH 7.0, but not at pH 5.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
September 2006
Parasites of the genus Leishmania are the causative agents of a range of clinical manifestations collectively known as Leishmaniasis, a disease that affects 12 million people worldwide. With the aim of identifying potential secreted protein targets for further characterization, we have applied two-dimensional gel electrophoresis and mass spectrometry methods to study the soluble protein content of the microsomal fraction from two Leishmania species, Leishmania L. major and L.
View Article and Find Full Text PDFLeishmaniasis is considered by the World Health Organization to be the second most important disease caused by a protozoan parasite. Biochemical and molecular biology studies can help in the understanding of the biology of the Leishmania parasite. All protozoan parasites, including Leishmania, are unable to synthesize purines de novo, and nucleoside diphosphate kinases (NDK) are involved in the salvage pathway by which free purines are converted to nucleosides and subsequently to nucleotides.
View Article and Find Full Text PDFBthTx-I (bothropstoxin-I) is a myotoxic Lys49-PLA2 (phospholipase A2 with Lys49) isolated from Bothrops jararacussu venom, which damages liposome membranes by a Ca2+-independent mechanism. The highly conserved Phe5/Ala102/Phe106 motif in the hydrophobic substrate-binding site of the Asp49-PLA2s is substituted by Leu5/Val102/Leu106 in the Lys49-PLA2s. The Leu5/Val102/Leu106 triad in BthTx-I was sequentially mutated via all single- and double-mutant combinations to the Phe5/Ala102/Phe106 mutant.
View Article and Find Full Text PDFBothropstoxin I (4BthTx-I) is a homodimeric lysine-49 (Lys49) phospholipase A(2) isolated from Bothrops jararacussu venom, which damages liposome membranes via a Ca(2+)-independent mechanism. The stability of the BthTx-I homodimer was evaluated by equilibrium chemical denaturation with guanidinium hydrochloride monitored by changes in the intrinsic tryptophan fluorescence anisotropy, far-UV circular dichroism, dynamic light scattering, and 1-anilinonaphthalene-8-sulfonate binding. Unfolding of the BthTx-I dimer proceeds via a monomeric intermediate with native-like structure, with Gibbs free energy (DeltaG(0)) values of 10.
View Article and Find Full Text PDFBothropstoxin-I (BthTx-I) is a Lys(49)-phospholipase A(2) from the venom of Bothrops jararacussu which demonstrates both myotoxic and Ca(2+)-independent membrane-damaging activities. The structural determinants of these activities are poorly defined, therefore site-directed mutagenesis has been used to substitute all cationic and aromatic residues between positions 115 and 129 in the C-terminal loop region of the protein. Substitution of lysine and arginine residues with alanine in the region 117-122 resulted in a significant reduction of myotoxic activity of the recombinant BthTx-I.
View Article and Find Full Text PDF