Publications by authors named "Arthur Ghazaryan"

The adsorption of serum proteins on biomaterial surfaces is a critical determinant for the outcome of medical procedures and therapies, which involve inserting materials and devices into the body. In this study, we aimed to understand how surface topography at the nanoscale influences the composition of the protein corona that forms on the (bio)material surface when placed in contact with serum proteins. To achieve that, we developed nanoengineered model surfaces with finely tuned topography of 16, 40, and 70 nm, overcoated with methyl oxazoline to ensure uniform outermost chemistry across all surfaces.

View Article and Find Full Text PDF

Nanoparticles have become an important utility in many areas of medical treatment such as targeted drug and treatment delivery as well as imaging and diagnostics. These advances require a complete understanding of nanoparticles' fate once placed in the body. Upon exposure to blood, proteins adsorb onto the nanoparticles surface and form a protein corona, which determines the particles' biological fate.

View Article and Find Full Text PDF

It is now well-established that the surface chemistry and "stealth" surface functionalities such as poly(ethylene glycol) (PEG) chains of nanocarriers play an important role to decrease unspecific protein adsorption of opsonizing proteins, to increase the enrichment of specific stealth proteins, and to prolong the circulation times of the nanocarriers. At the same time, PEG chains are used to provide colloidal stability for the nanoparticles. However, it is not clear how the chain length and density influence the unspecific and specific protein adsorption keeping at the same time the stability of the nanoparticles in a biological environment.

View Article and Find Full Text PDF