Background: Various ceramic materials have been used for esthetic rehabilitation with implants, but the issues regarding the dissipation of masticatory loads are not well understood.
Objectives: This in vitro quasi-static study aimed to evaluate with the photoelasticity test the dissipation of stress around dental implants with regard to different rehabilitation materials.
Material And Methods: A photoelastic model was elaborated in resin, where a conical Morse-tapered implant was inserted.
Objectives: The aims of this study were to compare the initial implant stability obtained using four different osteotomy techniques in low-density synthetic bone, to evaluate the instrument design in comparison to the implant design, and to determinate a possible correlation between the insertion torque and initial stability quotient (ISQ).
Materials And Methods: Four groups were identified in accordance with the osteotomy technique used (n = 10 implants per group): group G1, osteotomy using the recommended drilling sequence; group G2, osteotomy using an undersized compactor drill; group G3, osteotomy using an undersized drill; and group G4, osteotomy using universal osseodensification drills. Two polyurethane blocks were used: block 1, with a medullary portion of 10 pounds per cubic foot (PCF 10) and with a 1 mm cortical portion of PCF 40, and block 2, with a medullary of PCF 15 and with a 2 mm cortical portion of PCF 40.
Objective: During the insertion of dental implants in the bone tissue, different torque values can be applied. However, the high applied torque can cause damage to the implant connection. Our study sought to evaluate, by measuring the angle of rotation of the insertion drive and, later microscopic observation, possible changes in the structure of implants of different diameters with 3 different types of connections after the application of 4 different torque intensities.
View Article and Find Full Text PDF