Publications by authors named "Arthur D Loewy"

Article Synopsis
  • The traditional understanding of motor control suggests that movement of limbs on one side of the body is primarily managed by the opposite side of the brain.
  • Studies show that damage (or lesions) in one hemisphere typically leads to impairments in the opposite limb, but effects on the same side (ipsilateral) are less clear and could be influenced by the other hemisphere's activity.
  • Experiments on monkeys demonstrated that when specific areas in the parietal region of the brain were inactivated, reaching movements were slower in the affected side, confirming that motor control is mainly organized contralaterally, but challenges the idea of whether it's strictly limited to one hemisphere.
View Article and Find Full Text PDF

Restricting dietary sodium promotes sodium appetite in rats. Prolonged sodium restriction increases plasma potassium (pK), and elevated pK is largely responsible for a concurrent increase in aldosterone, which helps promote sodium appetite. In addition to increasing aldosterone, we hypothesized that elevated potassium directly influences the brain to promote sodium appetite.

View Article and Find Full Text PDF

In some patients, renal nerve denervation has been reported to be an effective treatment for essential hypertension. Considerable evidence suggests that afferent renal nerves (ARN) and sodium balance play important roles in the development and maintenance of high blood pressure. ARN are sensitive to sodium concentrations in the renal pelvis.

View Article and Find Full Text PDF

The 1970s saw the introduction of new technologies for tracing axons both anterogradely and retrogradely. These methods allowed us to visualize fine, unmyelinated pathways for the first time, such as the hypothalamic pathways that control the autonomic nervous system. As a result, we were able to identify the paraventricular nucleus and lateral hypothalamus as the key sites that provide direct inputs to the autonomic preganglionic neurons in the medulla and spinal cord.

View Article and Find Full Text PDF

By the late 1970׳s, the pathways had been identified from neurons in the nucleus of the solitary tract that control visceral sensory inflow and from the paraventricular nucleus and lateral hypothalamus that directly innervate the autonomic preganglionic neurons, thereby controlling autonomic outflow. However, the connections between the two were not yet clear. This paper identified the parabrachial nucleus as a key intermediary, receiving the bulk of outflow from the nucleus of the solitary tract and distributing it to a set of brainstem and forebrain sites that constituted a central autonomic control network.

View Article and Find Full Text PDF

Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2h later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO).

View Article and Find Full Text PDF

Serotonergic (5-hydroxytryptamine, 5-HT) neurons of the area postrema (AP) represent one neuronal phenotype implicated in the regulation of salt appetite. Tryptophan hydroxylase (Tryp-OH, synthetic enzyme-producing 5-HT) immunoreactive neurons in the AP of rats become c-Fos-activated following conditions in which plasma sodium levels are elevated; these include intraperitoneal injections of hypertonic saline and sodium repletion. Non-Tryp-OH neurons also became c-Fos-activated.

View Article and Find Full Text PDF

Using a double immunofluorescence procedure, we report the discovery of a novel group of fibrous astrocytes that co-express epithelial sodium channel (ENaC) γ-subunit protein along with glial acidic fibrillary protein (GFAP). These cells are concentrated along the borders of the sensory circumventricular organs (CVOs), embedded in the white matter (e.g.

View Article and Find Full Text PDF

The sensory circumventricular organs (CVOs) are specialized collections of neurons and glia that lie in the midline of the third and fourth ventricles of the brain, lack a blood-brain barrier, and function as chemosensors, sampling both the cerebrospinal fluid and plasma. These structures, which include the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), and area postrema (AP), are sensitive to changes in sodium concentration but the cellular mechanisms involved remain unknown. Epithelial sodium channel (ENaC)-expressing neurons of the CVOs may be involved in this process.

View Article and Find Full Text PDF

The transcription factor Forkhead box protein 2 (FoxP2) is expressed in two cell groups of the brainstem that have been implicated in sodium appetite regulation: the pre-locus coeruleus (pre-LC) and parabrachial nucleus--external lateral-inner subdivision (PBel-inner). Because the connections of these two groups are unknown, neuroanatomical tracing methods were used to define their central projections. The pre-LC outputs were first analyzed using an anterograde axonal tracer--Phaseolus vulgaris leucoagglutinin (PHAL) to construct a brain map.

View Article and Find Full Text PDF

Two specific groups of neurons in the dorsolateral pons are activated by dietary sodium deprivation. These two groups are the pre-locus coeruleus (pre-LC) and the inner subdivision of the external lateral parabrachial nucleus (PBel-inner). In each site, after rats are fed an extremely low-sodium diet for over a week, neurons increase their expression of an activity-induced transcription factor, c-Fos.

View Article and Find Full Text PDF

The area postrema (AP) is a circumventricular organ located in the dorsal midline of the medulla. It functions as a chemosensor for blood-borne peptides and solutes, and converts this information into neural signals that are transmitted to the nucleus tractus solitarius (NTS) and parabrachial nucleus (PB). One of its NTS targets in the rat is the aldosterone-sensitive neurons which contain the enzyme 11 β-hydroxysteroid dehydrogenase type 2 (HSD2).

View Article and Find Full Text PDF

The paraventricular hypothalamic nucleus (PVH) contains many neurons that innervate the brainstem, but information regarding their target sites remains incomplete. Here we labeled neurons in the rat PVH with an anterograde axonal tracer, Phaseolus vulgaris leucoagglutinin (PHAL), and studied their descending projections in reference to specific neuronal subpopulations throughout the brainstem. While many of their target sites were identified previously, numerous new observations were made.

View Article and Find Full Text PDF

The HSD2 (11-beta-hydroxysteroid dehydrogenase-type 2 enzyme) containing neurons of the nucleus tractus solitarius (NTS) become activated during low-sodium and high-aldosterone states such as hypovolemia. This response may be due to hormonal and/or neural signals. Hormonal signals may activate neurons in the area postrema that innervate the HSD2 neurons.

View Article and Find Full Text PDF
Aldosterone in the brain.

Am J Physiol Renal Physiol

September 2009

Pharmacological and physiological phenomena suggest that cells somewhere inside the central nervous system are responsive to aldosterone. Here, we present the fundamental physiological limitations for aldosterone action in the brain, including its limited blood-brain barrier penetration and its substantial competition from glucocorticoids. Recently, a small group of neurons with unusual sensitivity to circulating aldosterone were identified in the nucleus of the solitary tract.

View Article and Find Full Text PDF

The nucleus of the solitary tract (NTS) contains a unique subpopulation of aldosterone-sensitive neurons. These neurons express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2) and are activated by sodium deprivation. They are located in the caudal NTS, a region which is densely innervated by the vagus nerve, suggesting that they could receive direct viscerosensory input from the periphery.

View Article and Find Full Text PDF

The ventrolateral bed nucleus of the stria terminalis (BSTvl) receives direct input from two specific subpopulations of neurons in the nucleus tractus solitarius (NTS). It is heavily innervated by aldosterone-sensitive NTS neurons, which are selectively activated by sodium depletion, and by the A2 noradrenergic neurons, which are activated by visceral and immune- and stress-related stimuli. Here, we used a retrograde neuronal tracer to identify other brain sites that innervate the BSTvl.

View Article and Find Full Text PDF

The transcription factor Phox2b is necessary for the development of the nucleus of the solitary tract (NTS). In this brainstem nucleus, Phox2b is expressed exclusively within a subpopulation of glutamatergic neurons. The present experiments in the adult rat were designed to test whether this subpopulation includes the aldosterone-sensitive NTS neurons, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2).

View Article and Find Full Text PDF

Sodium appetite, the behavioural drive to ingest salt, is stimulated by prolonged physiological sodium deficiency in many animal species. The same neural mechanisms that are responsible for sodium appetite in laboratory animals may influence human behaviour as well, with particular relevance to the dietary salt intake of patients with diseases such as heart failure, renal failure, liver failure and salt-sensitive hypertension. Since the original experimental work of Curt Richter in the 1930s, much has been learned about the regulation of salt-ingestive behaviour.

View Article and Find Full Text PDF

Salt intake is an established response to sodium deficiency, but the brain circuits that regulate this behavior remain poorly understood. We studied the activation of neurons in the nucleus of the solitary tract (NTS) and their efferent target nuclei in the pontine parabrachial complex (PB) in rats during sodium deprivation and after salt intake. After 8-day dietary sodium deprivation, immunoreactivity for c-Fos (a neuronal activity marker) increased markedly within the aldosterone-sensitive neurons of the NTS, which express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2).

View Article and Find Full Text PDF

The nucleus accumbens (NAc) is part of a forebrain system implicated in reward, motivation, and learning. NAc neurons become activated during various ingestive activities, including salt intake. A subset of neurons within the nucleus tractus solitarius (NTS) shows c-Fos activation during prolonged sodium deprivation in rats.

View Article and Find Full Text PDF

Thirst and sodium appetite are both critical for restoring blood volume. Because these two behavioral drives can arise under similar physiological conditions, some of the brain sensory sites that stimulate thirst may also drive sodium appetite. However, the physiological and temporal dynamics of these two appetites exhibit clear differences, suggesting that they involve separate brain circuits.

View Article and Find Full Text PDF

The nucleus of the solitary tract (NTS) contains a unique subpopulation of neurons that express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2). These neurons are mineralocorticoid-sensitive and are activated in association with salt appetite during sodium deficiency. In the absence of sodium deficiency, the HSD2 neurons and sodium appetite are both stimulated by chronic mineralocorticoid administration.

View Article and Find Full Text PDF

The nucleus of the solitary tract (NTS) contains a subpopulation of neurons that express the enzyme 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), which makes them uniquely sensitive to aldosterone. These neurons may drive sodium appetite, which is enhanced by aldosterone. Anterograde and retrograde neural tracing techniques were used to reveal the efferent projections of the HSD2 neurons in the rat.

View Article and Find Full Text PDF