Binding characteristics of potent non-nucleoside HIV-1 reverse transcriptase inhibitors, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (1) and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino) quinoline (2), to bovine serum albumin (BSA) under simulative physiological conditions were investigated by multiple spectroscopic and computational methods. The experimental results demonstrated that (1) and (2) bound to BSA at site III (subdomain IB), and quenched BSA fluorescence through a static quenching process. The binding interaction of (1) or (2) to BSA forms stable complexes with the binding constants (K) at the level of 10 L/mol and the number of binding site was determined to be 1 for both systems, indicating that new synthesized compounds occupied one site in BSA with moderate binding affinities.
View Article and Find Full Text PDFHypercholesterolemia is a common cause of cardiovascular diseases (CVDs). Although allicin and capsaicin possess hypolipidemic effects through several molecular mechanisms, their effects on LDLR and PCSK9 expression are still unknown. This study aimed to investigate the effects of allicin and capsaicin on LDLR and PCSK9 expression in HepG2 cells.
View Article and Find Full Text PDFA spray-on wound dressing has many benefits, including easy and quick administration to broad and uneven wounds, better interface with the wound site, adhesion without additional dressing, and multiple applications in a portable package. By limiting direct contact with the wound site, such a design can prevent wound damage during treatment. This study revealed a simple, one-pot synthesis of spray-on wound dressing relying on polyvinylpyrrolidone solution incorporating silver nanoparticles as a broad-spectrum antibacterial agent and wound-healing antioxidant extract.
View Article and Find Full Text PDFIn the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (M) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (M), which plays an important role for the division and proliferation of the virus into the cell.
View Article and Find Full Text PDFNew target molecules, namely, 2-phenylamino-4-phenoxyquinoline derivatives, were designed using a molecular hybridization approach, which was accomplished by fusing the pharmacophore structures of three currently available drugs: nevirapine, efavirenz, and rilpivirine. The discovery of disubstituted quinoline indicated that the pyridinylamino substituent at the 2-position of quinoline plays an important role in its inhibitory activity against HIV-1 RT. The highly potent HIV-1 RT inhibitors, namely, 4-(2',6'-dimethyl-4'-formylphenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline () and 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(5″-cyanopyridin-2″ylamino)quinoline () exhibited half-maximal inhibitory concentrations (IC50) of 1.
View Article and Find Full Text PDFThe essential oil from Roxb. () has long been used in Thai herbal remedies to treat inflammation, pains, sprains, and wounds. It was therefore loaded into an electrospun fibrous membrane for use as an analgesic and antibacterial dressing for wound care.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2020
In the present investigation, the intermolecular interaction of 4-(4'-cyanophenoxy)-2-(4''-cyanophenyl)-aminoquinoline (1), a potent non-nucleoside HIV-1 reverse transcriptase inhibitors, with the transport proteins, namely bovine serum albumin (BSA) and human serum albumin (HSA), has been investigated under physiological conditions employing UV-Vis, fluorescence spectrophotometry, competitive binding experiments and molecular docking methods. The results indicated that binding of (1) to the transport proteins caused fluorescence quenching though a static quenching mechanism. The number of binding site (n) and the apparent binding constant (K) between (1) and the transport proteins were determined to be about 1 and 10-10 L·mol (at three different temperatures; 298, 308, 318 K), respectively.
View Article and Find Full Text PDFIn this study, amino-oxy-diarylquinolines were designed using structure-guided molecular hybridization strategy and fusing of the pharmacophore templates of nevirapine (NVP), efavirenz (EFV), etravirine (ETV, TMC125) and rilpivirine (RPV, TMC278). The anti-HIV-1 reverse transcriptase (RT) activity was evaluated using standard ELISA method, and the cytotoxic activity was performed using MTT and XTT assays. The primary bioassay results indicated that 2-amino-4-oxy-diarylquinolines possess moderate inhibitory properties against HIV-1 RT.
View Article and Find Full Text PDFTHE ASYMMETRIC UNIT OF THE TITLE COMPOUND [SYSTEMATIC NAME: 9,10-dimeth-oxy-7-methyl-6,7,7a,8-tetra-hydro-5H-benzo[g][1,3]benzodioxolo[6,5,4-de]quinoline], C(20)H(21)NO(4), contains two independent mol-ecules with very similar bond lengths and angles. The crystal packing exhibits voids of 131 Å(3).
View Article and Find Full Text PDFThe cytotoxic activity of five alkaloids, namely 4,5-dioxo-dehydrocrebanine (1), dehydrocrebanine (2), crebanine (3), oxostephanine (4), and thailandine (5) isolated from the tuber and leaves of Stephania venosa (Blume) Spreng was investigated. Thailandine showed the strongest activity against lung carcinoma cells (A549) (IC50 of 0.30 µg/mL) with very low cytotoxicity against normal embryonic lung cells (MRC-5).
View Article and Find Full Text PDFCereulide and valinomycin are both 36-membered cyclic depsipeptides with 12 stereogenic centers that have a very similar sequence of cyclo [-D-O-Leu-D-Ala-L-O-Val-L-Val-]3 and cyclo [-D-O-Val-D-Val-L-O-Ala-L-Val-]3, respectively. Cereulide is an emetic toxin produced by Bacillus cereus through an unusual non-ribosomal peptide synthesis (NRPS), whereas valinomycin, produced by Streptomyces fulvissimus, is a known antibiotic drug. Both compounds are known as K+-ion-selective ionophores and cause a potassium-dependent drop in the transmembrane potential of mitochondria, arising from the uptake of a K+-ion-charged ionophore complex.
View Article and Find Full Text PDF