Introduction: is a key pathobiont in catheter-associated urinary tract infections (CA-UTIs), which is well known to form crystalline biofilms that occlude catheters. Urease activity alkylates urine through the release of ammonia, consequentially resulting in higher levels of Mg and Ca and formation of crystals. In this study, we showed that -acetyl cysteine (NAC), a thiol antioxidant, is a potent urease inhibitor that prevents crystalline biofilm formation.
View Article and Find Full Text PDFUrinary tract infections (UTIs) affect more than 150 million individuals annually. A strong correlation exists between bladder epithelia invasion by uropathogenic bacteria and patients with recurrent UTIs. Intracellular bacteria often recolonise epithelial cells post-antibiotic treatment.
View Article and Find Full Text PDFCystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). The resulting chloride and bicarbonate imbalance produces a thick, static lung mucus. This mucus is not easily expelled from the lung and can be colonised by bacteria, leading to biofilm formation.
View Article and Find Full Text PDFBackground: The WHO declared Staphylococcus aureus as a 'pathogen of high importance' in 2017. One-fifth of all bloodstream-related infections in Australia and 12 000 cases of bacteraemia in the UK (2017-18) were caused by the MRSA variant. To address the need for novel therapies, we investigated several permutations of an innovative combination therapy containing N-acetylcysteine (NAC), an antibiotic and an enzyme of choice in eradicating MRSA and MSSA biofilms.
View Article and Find Full Text PDFBacterial antibiotic resistance has increased in recent decades, raising concerns in hospital and community settings. Novel, innovative strategies are needed to eradicate bacteria, particularly within biofilms, and diminish the likelihood of recurrence. In this study, we investigated whether glutathione (GSH) can act as a biofilm disruptor, and enhance antibiotic effectiveness against various bacterial pathogens.
View Article and Find Full Text PDF