Traumatic insults to the spinal cord induce both immediate mechanical damage and subsequent tissue degeneration leading to a substantial physiological, biochemical, and functional reorganization of the spinal cord. Various spinal cord injury (SCI) models have shown the adaptive potential of the spinal cord and its limitations in the case of total or partial absence of supraspinal influence. Meaningful recovery of function after SCI will most likely result from a combination of therapeutic strategies, including neural tissue transplants, exogenous neurotrophic factors, elimination of inhibitory molecules, functional sensorimotor training, and/or electrical stimulation of paralyzed muscles or spinal circuits.
View Article and Find Full Text PDFTraumatic injury to the spinal cord (SCI) causes death of neurons, disruption of motor and sensory nerve fiber (axon) pathways and disruption of communication with the brain. One of the goals of our research is to promote axon regeneration to restore connectivity across the lesion site. To accomplish this we developed a peripheral nerve (PN) grafting technique where segments of sciatic nerve are either placed directly between the damaged ends of the spinal cord or are used to form a bridge across the lesion.
View Article and Find Full Text PDFA peripheral nerve graft model was used to examine axonal growth after a unilateral cervical (C) contusion injury in adult rats and to determine if manipulation of an injury site prior to transplantation affects spontaneous behavioral recovery. After a short delay (7 d) the epicenter of a C4 contusion was exposed and aspirated without harming the cavity walls followed by apposition with one end of a pre-degenerated tibial nerve to the rostral cavity wall. After a longer delay (28 d) the aspirated cavity was treated with GDNF to promote regeneration by chronically injured neurons.
View Article and Find Full Text PDF