Neuromorphic systems are typically based on nanoscale electronic devices, but nature relies on ions for energy-efficient information processing. Nanofluidic memristive devices could thus potentially be used to construct electrolytic computers that mimic the brain down to its basic principles of operation. Here we report a nanofluidic device that is designed for circuit-scale in-memory processing.
View Article and Find Full Text PDFThe development of advanced methods for the synthesis of nano- and microparticles in the field of biomedicine is of high interest due to a range of reasons. The current synthesis methods may have limitations in terms of efficiency, scalability, and uniformity of the particles. Here, we investigate the synthesis of submicron calcium carbonate using a microfluidic chip with a T-shaped oil supply for droplet-based synthesis to facilitate control over the formation of submicron calcium carbonate particles.
View Article and Find Full Text PDFWe report the growth of Ge-doped homoepitaxial diamond films by microwave plasma CVD in GeH-CH-H gas mixtures at moderate pressures (70-100 Torr). Optical emission spectroscopy was used to monitor Ge, H, and C species in the plasma at different process parameters, and trends for intensities of those radicals, gas temperature, and excitation temperature, with variations of GeH or CH precursor concentrations, were investigated. The film deposited on (111)-oriented single crystal diamond substrates in a high growth rate regime revealed a strong emission of a germanium-vacancy (GeV) color center with a zero-phonon line at ≈604 nm wavelength in photoluminescence (PL) spectra, confirming the successful doping.
View Article and Find Full Text PDFThe electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic "water-only" battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes.
View Article and Find Full Text PDFNature provides a wide range of self-assembled structures from the nanoscale to the macroscale. Under the right thermodynamic conditions and with the appropriate material supply, structures like stalactites, icicles, and corals can grow. However, the natural growth process is time-consuming.
View Article and Find Full Text PDFThe surface charge of an open water surface is crucial for solvation phenomena and interfacial processes in aqueous systems. However, the magnitude of the charge is controversial, and the physical mechanism of charging remains incompletely understood. Here we identify a previously overlooked physical mechanism determining the surface charge of water.
View Article and Find Full Text PDFPoly(diphenylene phthalide) (PDP) belongs to the class of carbocyclic organic electroactive polymers, which exhibits electric conductive properties when an external electric field and/or mechanical stress is applied. In this work, the transport properties of thin-film layered lead-PDP-lead structures were experimentally studied in a wide temperature range. At sufficiently high temperatures, the current voltage characteristics are satisfactorily described in terms of the injection model of currents limited by the space charge.
View Article and Find Full Text PDFWhile the static structure of aqueous electrolytes has been studied for decades, their dynamic microscopic structure remains unresolved yet critical in many areas. We report a comparative study of dc and ac (1 Hz to 20 GHz) conductivity data of weak and strong electrolytes, highlighting previously missing differences and similarities. Based on these results, we introduce into consideration the intrinsic short-lived ions of water, namely, excess protons (HO) and proton holes (OH).
View Article and Find Full Text PDFAn experimental quasi-equilibrium phase diagram of the polyvinylidene fluoride (PVDF)-camphor mixture is constructed using an original optical method. For the first time, it contains a boundary curve that describes the dependence of camphor solubility in the amorphous regions of PVDF on temperature. It is argued that this diagram cannot be considered a full analogue of the eutectic phase diagrams of two low-molar-mass crystalline substances.
View Article and Find Full Text PDFLiquid crystals self-assemble on nanopatterned alignment layers into purely soft matter metasurfaces sensitive to external stimuli and imparting tailored spatial modulations to transmitted light wavefronts. Upon fine optimization, they are capable of efficient light deflection by virtue of anomalous refraction into a dominating transmission diffraction order. To expand the spectral range and acquire additional functionality, we put forward the double-sided metasurface design based on the liquid crystal alignment by a pair of complementing patterned substrates.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2022
Neodymium iron borate NdFe(BO) is an intensively studied multiferroic with high electric polarization values controlled by a magnetic field. It is characterized by a large quadratic magnetoelectric effect, rigidity in the base plane and a rather strong piezoelectric effect. In this work, the atomic structure of (NdBi)Fe(BO) was studied by single-crystal X-ray diffraction in the temperature range 20-500 K (space group R32, Z = 3).
View Article and Find Full Text PDFNanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance.
View Article and Find Full Text PDFWe report the formation of high optical power microlenses in the near-surface region of the liquid crystal layer. Such microlenses, possessing a very small focal length at a rather large aperture A (/∼2), are able to focus the light into spots of a characteristic size comparable with the wavelength. Using numerical modeling, a specific patterning profile of a liquid crystal (LC) alignment surface by an ion beam is proposed to provide the aligning properties necessary for the formation of an array of microlenses with a focal length comparable to the LC cell thickness.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
December 2020
High-quality FeGaBO single crystals (0.0 ≤ x ≤ 1.0) in the form of basal plates were synthesized by the flux technique.
View Article and Find Full Text PDFChemical polarity governs various mechanical, chemical, and thermodynamic properties of dielectrics. Polar liquids have been amply studied, yet the basic mechanisms underpinning their dielectric properties remain not fully understood, as standard models following Debye's phenomenological approach do not account for quantum effects and cannot aptly reproduce the full dc-up-to-THz spectral range. Here, using the illustrative case of monohydric alcohols, we show that deep tunneling and the consequent intermolecular separation of excess protons and "proton-holes" in the polar liquids govern their static and dynamic dielectric properties on the same footing.
View Article and Find Full Text PDFWe report on experimental investigations of the lasing effect in novel chiral liquid crystal (CLC) systems with a deformed lying helix (DLH). The lasing is studied for both odd- and even-order field-induced stop-bands, which are characteristic exclusively of the DLH state. The DLH state is achieved in special CLC cells with periodic boundary conditions, when the surface alignment is flipped between planar and vertical states.
View Article and Find Full Text PDFThe most common species in liquid water, next to neutral [Formula: see text] molecules, are the [Formula: see text] and [Formula: see text] ions. In a dynamic picture, their exact concentrations depend on the time scale at which these are probed. Here, using a spectral-weight analysis, we experimentally resolve the fingerprints of the elusive fluctuations-born short-living [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] ions in the IR spectra of light ([Formula: see text]), heavy ([Formula: see text]), and semi-heavy (HDO) water.
View Article and Find Full Text PDFSelf-assembling of liquid-crystal metasurfaces on polymer layers patterned by a focused ion beam manifests itself in distinctly colored optical transmission, as light from certain spectral bands is efficiently diffracted by the periodic liquid crystal modulations. We explore the metasurface electro-optics by applying voltage across the liquid crystal to straighten its director distribution and reroute the diffracted light into the direct transmission. We show that the characteristic times of switching from the diffracting to the transmitting state can be decreased down to a millisecond by increasing the driving voltage up to 6-8 V, while the main part of the relaxation back into the periodically deformed diffracting state occurs within about a few milliseconds, i.
View Article and Find Full Text PDFWater at the solid-liquid interface exhibits an anomalous ionic conductivity and dielectric constant compared to bulk water. Both phenomena still lack a detailed understanding. Here, we report radio-frequency measurements and analyses of the electrodynamic properties of interfacial water confined in nanoporous matrices formed by diamond grains of various sizes, ranging from 5 nm to 0.
View Article and Find Full Text PDFAn experimental phase diagram of the isotactic polypropylene-camphor system is constructed using an original optical method. It considerably deviates from the dynamic diagram, which can be obtained using conventional differential scanning calorimetry (DSC), and contains an additional boundary line that describes camphor solubility in the polymer. An accurate phase diagram makes it possible to perform a detailed and consistent thermodynamic analysis of the DSC, optical, and scanning electron microscopy data on the cooling of prehomogenized mixtures of different compositions, which leads to the formation of capillary-porous bodies via thermally induced phase separation.
View Article and Find Full Text PDFThe alignment of liquid crystals by surfaces is crucial for applications. It determines the director configuration in the bulk, its stability against defects and electro-optical switching scenarios. The conventional planar alignment of rubbed polymer layers can be locally flipped to vertical by irradiation with a focused ion beam on a scale of tens of nanometers.
View Article and Find Full Text PDFPhys Chem Chem Phys
April 2019
Knowledge of the electrical properties of liquid and solid water is extremely important for a detailed understanding of their structures. Though the macroscopic parameters differ, ice and water still have much in common from the dielectric spectroscopy viewpoint and should thus be considered on the same footing for the study of their electrical properties. In this work, we treat the complete dielectric spectra of ice and water, covering fourteen orders in frequency magnitude.
View Article and Find Full Text PDFFormation of photonic liquid crystal metasurfaces on rubbed polyimide substrates patterned by focused ion beam is demonstrated. Modulation of the surface anchoring conditions with periods from 1 to 6 micrometers gives rise to periodic deformation of the nematic liquid crystal director field. The exact periodicity is confirmed by the light diffraction measurements.
View Article and Find Full Text PDF