Publications by authors named "Artem V Badasyan"

Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles.

View Article and Find Full Text PDF

With the help of the one-dimensional random Potts-like model, we study the origins of fine structures observed on differential melting profiles of double-stranded DNA. We theoretically assess the effects of sequence arrangement on DNA melting curves through the comparison of results for random, correlated, and block sequences. Our results re-confirm the smearing out of the fine structure with the increase in chain length for all types of sequence arrangements and suggest that the fine structure is a finite-size effect.

View Article and Find Full Text PDF

Motivated by measurements on stretched double-stranded DNA in the presence of multivalent cations, we develop a statistical mechanical model for the compaction of an insoluble semiflexible polymer under tension. Using a mean-field approach, we determine the order of the extended-to-compact transition and provide an interpretation for the magnitude and interval of tensions over which compaction takes place. In the simplest thermodynamic limit of an infinitely long homogeneous polymer, compaction is a first-order transition that occurs at a single value of tension.

View Article and Find Full Text PDF

By taking into account base-base stacking interactions we improve the Generalized Model of Polypeptide Chain (GMPC). Based on a one-dimensional Potts-like model with many-particle interactions, the GMPC describes the helix-coil transition in both polypeptides and polynucleotides. In the framework of the GMPC we show that correctly introduced nearest-neighbor stacking interactions against the background of hydrogen bonding lead to increased stability (melting temperature) and, unexpectedly, to decreased cooperativity (maximal correlation length).

View Article and Find Full Text PDF