The performance of a classifier trained on data coming from a specific domain typically degrades when applied to a related but different one. While annotating many samples from the new domain would address this issue, it is often too expensive or impractical. Domain Adaptation has therefore emerged as a solution to this problem; It leverages annotated data from a source domain, in which it is abundant, to train a classifier to operate in a target domain, in which it is either sparse or even lacking altogether.
View Article and Find Full Text PDFWe propose an approach for detecting flying objects such as Unmanned Aerial Vehicles (UAVs) and aircrafts when they occupy a small portion of the field of view, possibly moving against complex backgrounds, and are filmed by a camera that itself moves. We argue that solving such a difficult problem requires combining both appearance and motion cues. To this end we propose a regression-based approach for object-centric motion stabilization of image patches that allows us to achieve effective classification on spatio-temporal image cubes and outperform state-of-the-art techniques.
View Article and Find Full Text PDF