Step edges of topological crystalline insulators can be viewed as predecessors of higher-order topology, as they embody one-dimensional edge channels embedded in an effective three-dimensional electronic vacuum emanating from the topological crystalline insulator. Using scanning tunneling microscopy and spectroscopy, we investigate the behavior of such edge channels in PbSnSe under doping. Once the energy position of the step edge is brought close to the Fermi level, we observe the opening of a correlation gap.
View Article and Find Full Text PDFThe interaction of spin-polarized one-dimensional (1D) topological edge modes localized along single-atomic steps of the topological crystalline insulator Pb_{0.7}Sn_{0.3}Se(001) has been studied systematically by scanning tunneling spectroscopy.
View Article and Find Full Text PDF