We study quasiparticle dynamics in a Bose-Einstein condensate with a vortex by following the center of mass motion of a Bogoliubov wave packet, and find important Berry-phase effects due to the background flow. We show that the Berry phase invalidates the usual canonical relation between the mechanical momentum and position variables, leading to important modifications of quasiparticle statistics and thermodynamic properties of the condensates. Applying these results to a vortex in an infinite uniform superfluid, we find that the total transverse force acting on the vortex is proportional to the superfluid density.
View Article and Find Full Text PDFWe show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous Hall and spin Hall effects, with cold atoms in optical lattices.
View Article and Find Full Text PDFWe study the preparation and manipulation of states involving a small number of interacting particles. By controlling the splitting and fusing of potential wells, we show how to interconvert Mott-insulator-like and trapped BEC-like states. We also discuss the generation of "Schrödinger cat" states by splitting a microtrap and taking into practical consideration the asymmetry between the resulting wells.
View Article and Find Full Text PDF