(1) Purpose: To determine the borders of malignant gliomas with diffusion kurtosis and perfusion MRI biomarkers. (2) Methods: In 50 high-grade glioma patients, diffusion kurtosis and pseudo-continuous arterial spin labeling (pCASL) cerebral blood flow (CBF) values were determined in contrast-enhancing area, in perifocal infiltrative edema zone, in the normal-appearing peritumoral white matter of the affected cerebral hemisphere, and in the unaffected contralateral hemisphere. Neuronavigation-guided biopsy was performed from all affected hemisphere regions.
View Article and Find Full Text PDFBackground: Neurosurgical resection of insular gliomas is complicated by the possibility of iatrogenic injury to the lenticulostriate arteries (LSAs) and is associated with devastating neurological complications, hence the need to accurately assess the number of LSAs and their relationship to the tumor preoperatively.
Methods: The study included 24 patients with insular gliomas who underwent preoperative 3D-TOF MRA to visualize LSAs. The agreement of preoperative magnetic resonance imaging with intraoperative data in terms of the number of LSAs and their invasion by the tumor was assessed using the Kendall rank correlation coefficient and Cohen's Kappa with linear weighting.
Background: Klinger's fiber dissection technique is widely used for studying the anatomy of white matter. Herein, we present a technical description of Klinger's proposed fiber dissection algorithm with neuronavigation assistance which allows for a more accurate determination of the projection of association fibers.
Methods: An anatomical study was conducted on 8 hemispheres of the human brain, prepared according to the Klingler fiber dissection technique.
The aim of the study was to evaluate the relationship between tumor blood flow (TBF) measured by the pseudo-continuous arterial spin labeling (PCASL) method and IDH1 mutation status of gliomas as well as Ki-67 proliferative index. Methods. The study included 116 patients with newly diagnosed gliomas of various grades.
View Article and Find Full Text PDFIntroduction: The prediction of the fluorescent effect of 5-aminolevulinic acid (5-ALA) in patients with diffuse gliomas can improve the selection of patients. The degree of enhancement of gliomas has been reported to predict 5-ALA fluorescence, while, at the same time, rarer cases of fluorescence have been described in non-enhancing gliomas. Perfusion studies, in particular arterial spin labeling perfusion, have demonstrated high efficiency in determining the degree of malignancy of brain gliomas and may be better for predicting fluorescence than contrast enhancement.
View Article and Find Full Text PDF