Publications by authors named "Arteaga C"

Smoking is a major modifiable risk factor for cardiovascular (CV) disease. Varenicline is a pharmacological aid for smoking cessation. To explore the CV safety of varenicline, we investigated the incidence of CV events in varenicline-treated subjects across all phase 2-4 randomized placebo-controlled clinical trials of ≥12-week treatment duration conducted in smokers aged ≥18 years and sponsored by the drug manufacturer.

View Article and Find Full Text PDF

After an initial response to chemotherapy, many patients with triple-negative breast cancer (TNBC) have recurrence of drug-resistant metastatic disease. Studies with TNBC cells suggest that chemotherapy-resistant populations of cancer stem-like cells (CSCs) with self-renewing and tumor-initiating capacities are responsible for these relapses. TGF-β has been shown to increase stem-like properties in human breast cancer cells.

View Article and Find Full Text PDF

Purpose: Dual blockade of HER2 with trastuzumab and lapatinib or with pertuzumab is a superior treatment approach compared with single-agent HER2 inhibitors. However, many HER2-overexpressing breast cancers still escape from this combinatorial approach. Inhibition of HER2 and downstream phosphoinositide 3-kinase (PI3K)/AKT causes a transcriptional and posttranslational upregulation of HER3 which, in turn, counteracts the antitumor action of the HER2-directed therapies.

View Article and Find Full Text PDF

The antibody trastuzumab is approved for treatment of patients with HER2 (ERBB2)-overexpressing breast cancer. A significant fraction of these tumors are either intrinsically resistant or acquire resistance rendering the drug ineffective. The development of resistance has been attributed to failure of the antibody to inhibit phosphoinositide 3-kinase (PI3K), which is activated by the HER2 network.

View Article and Find Full Text PDF

Antiestrogen therapies targeting estrogen receptor α (ER) signaling are a mainstay for patients with ER+ breast cancer. While many cancers exhibit resistance to antiestrogen therapies, a large body of clinical and experimental evidence indicates that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway promotes antiestrogen resistance. In addition, continued ligand-independent ER signaling in the setting of estrogen deprivation may contribute to resistance to endocrine therapy.

View Article and Find Full Text PDF

Purpose: We tested the hypothesis that allosteric Akt inhibitor MK-2206 inhibits tumor growth, and that PTEN/PIK3CA mutations confer MK-2206 sensitivity.

Experimental Design: MK-2206 effects on cell signaling were assessed in vitro and in vivo. Its antitumor efficacy was assessed in vitro in a panel of cancer cell lines with differing PIK3CA and PTEN status.

View Article and Find Full Text PDF

We describe herein a patient presenting with bilateral estrogen-receptor-positive (ER+) breast tumors who was enrolled in a clinical trial exploring molecular aberrations associated with hormone-refractory tumor cell proliferation. Short-term (two week) hormonal therapy with the aromatase inhibitor letrozole substantially reduced proliferation as measured by Ki67 immunohistochemistry in one tumor, whereas the second was essentially unchanged. Extensive molecular and genetic work-up of the two tumors yielded divergent lesions in the two tumors: an activating KRAS mutation in the responsive tumor and an amplification of the fibroblast growth factor receptor-1 (FGFR1) locus in the treatment-refractory tumor.

View Article and Find Full Text PDF

Neoadjuvant chemotherapy (NAC) induces a pathological complete response (pCR) in ~30% of patients with breast cancer. However, many patients have residual cancer after chemotherapy, which correlates with a higher risk of metastatic recurrence and poorer outcome than those who achieve a pCR. We hypothesized that molecular profiling of tumors after NAC would identify genes associated with drug resistance.

View Article and Find Full Text PDF

The phosphoinositide 3-kinase (PI3K)/AKT and RAF/MEK/ERK signaling pathways are activated in a wide range of human cancers. In many cases, concomitant inhibition of both pathways is necessary to block proliferation and induce cell death and tumor shrinkage. Several feedback systems have been described in which inhibition of one intracellular pathway leads to activation of a parallel signaling pathway, thereby decreasing the effectiveness of single-agent targeted therapies.

View Article and Find Full Text PDF

We compared the reproducibility of multiple reaction monitoring (MRM) mass spectrometry-based peptide quantitation in tryptic digests from formalin-fixed, paraffin-embedded (FFPE) and frozen clear cell renal cell carcinoma tissues. The analyses targeted a candidate set of 114 peptides previously identified in shotgun proteomic analyses, of which 104 were detectable in FFPE and frozen tissue. Although signal intensities for MRM of peptides from FFPE tissue were on average 66% of those in frozen tissue, median coefficients of variation (CV) for measurements in FFPE and frozen tissues were nearly identical (18-20%).

View Article and Find Full Text PDF

Approximately 25% of human breast cancers overexpress the HER2 (ErbB2) proto-oncogene, which confers a more aggressive tumor phenotype and associates with a poor prognosis in patients with this disease. Two approved therapies targeting HER2, the monoclonal antibody trastuzumab and the tyrosine kinase inhibitor lapatinib, are clinically active against this type of breast cancer. However, a significant fraction of patients with HER2+ breast cancer treated with these agents eventually relapse or develop progressive disease.

View Article and Find Full Text PDF

Increasing evidence suggests that HER2-amplified breast cancer cells use HER3/ErbB3 to drive therapeutic resistance to HER2 inhibitors. However, the role of ErbB3 in the earliest events of breast epithelial transformation remains unknown. Using mouse mammary specific models of Cre-mediated ErbB3 ablation, we show that ErbB3 loss prevents the progressive transformation of HER2-overexpressing mammary epithelium.

View Article and Find Full Text PDF

Let j be a positive integer. For each integer n > j we consider the connectedness locus M(n) of the family of polynomials P(c)(z)=z(n) - cz(n-j), where c is a complex parameter. We prove that lim n→∞ M(n) = D in the Hausdorff topology, where D is the unitary closed disk {c;|c|≤1}.

View Article and Find Full Text PDF

Molecular profiling holds great promise for improving our ability to diagnose, prognosticate, and select individualized treatments for lung cancer patients. However, using multidimensional data and novel technologies to derive these profiles is limited by our ability to employ the assay in a clinical scenario where it can impact the course of disease. Although many molecular signatures have been reported in lung cancer, as of yet, few have been sufficiently validated for widespread clinical use.

View Article and Find Full Text PDF

Recent advances in tumor genetics and drug development have led to the generation of a wealth of anticancer targeted therapies. A few recent examples indicate that these drugs are mainly, if not exclusively, active against tumors of a particular genotype that can be identified by a diagnostic test, usually by detecting a somatic alteration in the tumor DNA. However, for the majority of targeted therapies in development, there are still no clinical tools to determine which patients are most likely to benefit or, alternatively, be resistant de novo to these novel agents or drug combinations.

View Article and Find Full Text PDF

The optical redox ratio (fluorescence intensity of NADH divided by that of FAD), was acquired for a panel of breast cancer cell lines to investigate how overexpression of human epidermal growth factor receptor 2 (HER2) affects tumor cell metabolism, and how tumor metabolism may be altered in response to clinically used HER2-targeted therapies. Confocal fluorescence microscopy was used to acquire NADH and FAD auto-fluorescent images. The optical redox ratio was highest in cells overexpressing HER2 and lowest in triple negative breast cancer (TNBC) cells, which lack HER2, progesterone receptor, and estrogen receptor (ER).

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) axis regulates essential cellular functions including cell survival, proliferation, metabolism, migration, and angiogenesis. The PI3K pathway is activated in human cancers by mutation, amplification, and deletion of genes encoding components of this pathway. The critical role of PI3K in cancer has led to the development of drugs targeting the effector mechanisms of this signaling network.

View Article and Find Full Text PDF

ErbB3 harbors weak kinase activity, but strongly activates downstream phosphatidylinositol 3-kinase/Akt signaling through heterodimerization with and activation by other ErbB receptor tyrosine kinases. We report here that ErbB3 loss in the luminal mammary epithelium of mice impaired Akt and MAPK signaling and reduced luminal cell proliferation and survival. ERBB3 mRNA expression levels were highest in luminal mammary populations and lowest in basal cell/stem cell populations.

View Article and Find Full Text PDF

Cancers with specific genetic mutations are susceptible to selective kinase inhibitors. However, there is a wide spectrum of benefit among cancers harboring the same sensitizing genetic mutations. Herein, we measured apoptotic rates among cell lines sharing the same driver oncogene following treatment with the corresponding kinase inhibitor.

View Article and Find Full Text PDF

The advent of HER2-directed therapies has significantly improved the outlook for patients with HER2-positive early stage breast cancer. However, a significant proportion of these patients still relapse and die of breast cancer. Trials to define, refine and optimize the use of the two approved HER2-targeted agents (trastuzumab and lapatinib) in patients with HER2-positive early stage breast cancer are ongoing.

View Article and Find Full Text PDF

Mutations in genes that constitute the phosphatidylinositol 3-kinase (PI3K) pathway occur in >70% of breast cancers. Clinical and experimental evidence suggest that PI3K pathway activation promotes resistance to some of the current breast cancer therapies. PI3K is a major signaling hub downstream of human epidermal growth factor receptor (HER)2 and other receptor tyrosine kinases.

View Article and Find Full Text PDF

Introduction: Current smoking cessation guidelines recommend setting a quit date prior to starting pharmacotherapy. However, providing flexibility in the date of quitting may be more acceptable to some smokers. The objective of this study was to compare varenicline 1 mg twice daily (b.

View Article and Find Full Text PDF

Most estrogen receptor α (ER)-positive breast cancers initially respond to antiestrogens, but many eventually become estrogen-independent and recur. We identified an estrogen-independent role for ER and the CDK4/Rb/E2F transcriptional axis in the hormone-independent growth of breast cancer cells. ER downregulation with fulvestrant or small interfering RNA (siRNA) inhibited estrogen-independent growth.

View Article and Find Full Text PDF

Although antiestrogen therapies targeting estrogen receptor (ER) α signaling prevent disease recurrence in the majority of patients with hormone-dependent breast cancer, a significant fraction of patients exhibit de novo or acquired resistance. Currently, the only accepted mechanism linked with endocrine resistance is amplification or overexpression of the ERBB2 (human epidermal growth factor receptor 2 [HER2]) proto-oncogene. Experimental and clinical evidence suggests that hyperactivation of the phosphatidylinositol 3-kinase (PI3K) pathway, the most frequently mutated pathway in breast cancer, promotes antiestrogen resistance.

View Article and Find Full Text PDF