Departing from the conventional axenic and heterotrophic cultures, our research ventures into unexplored territory by investigating the potential of photosynthetic microbiomes for polyhydroxybutyrate (PHB) synthesis, a biodegradable polyester that presents a sustainable alternative to conventional plastics. Our investigation focused on a cyanobacteria-enriched microbiome, dominated by Synechocystis sp. and Synechococcus sp.
View Article and Find Full Text PDFSeven photosynthethic microbiomes were collected from field environmental samples to test their potential in polyhydroxybutyrate (PHB) and exopolysaccharides (EPS) production, both alternatives to chemical-based polymers. Microscope observations together with microbial sequence analysis revealed the microbiome enrichment in cyanobacteria after culture growth under phosphorus limitation. PHB and EPS production were studied under three culture factors (phototrophy, mixotrophy and heterotrophy) by evaluating and optimizing the effect of three parameters (organic and inorganic carbon and days under light:dark cycles) by Box-Behnken design.
View Article and Find Full Text PDF