Publications by authors named "Arta Ajazi"

Survival from UV-induced DNA lesions relies on nucleotide excision repair (NER) and the Mec1 DNA damage response (DDR). We study DDR and NER in aging cells and find that old cells struggle to repair DNA and activate Mec1. We employ pharmacological and genetic approaches to rescue DDR and NER during aging.

View Article and Find Full Text PDF

Glutamine analogs are potent suppressors of general glutamine metabolism with anti-cancer activity. 6-diazo-5-oxo-L-norleucine (DON) is an orally available glutamine analog which has been recently improved by structural modification for cancer treatment. Here, we explored the chemogenomic landscape of DON sensitivity using budding yeast as model organism.

View Article and Find Full Text PDF

Several cytotoxic agents used in cancer therapy cause DNA damage and replication stress. Understanding the metabolic determinants of the cell response to replication stress-inducing agents could have relevant implications for cancer treatment. In a recent study, we showed that cell survival during replication stress is influenced by the availability of amino acids, as well as by TORC1 and Gcn2-mediated amino acid sensing pathways.

View Article and Find Full Text PDF

In tumor-bearing mice, cyclic fasting or fasting-mimicking diets (FMD) enhance the activity of antineoplastic treatments by modulating systemic metabolism and boosting antitumor immunity. Here we conducted a clinical trial to investigate the safety and biological effects of cyclic, five-day FMD in combination with standard antitumor therapies. In 101 patients, the FMD was safe, feasible, and resulted in a consistent decrease of blood glucose and growth factor concentration, thus recapitulating metabolic changes that mediate fasting/FMD anticancer effects in preclinical experiments.

View Article and Find Full Text PDF

Atg6 mediates autophagy and endosomal trafficking. We investigated how Atg6 influences replication stress. Combining genetic, genomic, metabolomic, and proteomic approaches, we found that the Vps34-Vps15-Atg6-Vps38-phosphatydilinositol-3 phosphate (PtdIns(3)P) axis sensitizes cells to replication stress by favoring the degradation of plasma membrane amino acid (AA) transporters via endosomal trafficking and ESCRT proteins, while the PtdIns(3)P phosphatases Ymr1 and Inp53 promote survival to replication stress by reversing this process.

View Article and Find Full Text PDF

Purpose: The mTOR complex C1 (mTORC1) inhibitor everolimus in combination with the aromatase inhibitor exemestane is an effective treatment for patients with hormone receptor-positive (HR), HER2-negative (HER2), advanced breast cancer (HR/HER2 aBC). However, everolimus can cause hyperglycemia and hyperinsulinemia, which could reactivate the PI3K/protein kinase B (AKT)/mTORC1 pathway and induce tumor resistance to everolimus.

Experimental Design: We conducted a multicenter, retrospective, Italian study to investigate the impact of baseline and on-treatment (i.

View Article and Find Full Text PDF

The DNA damage response (DDR) coordinates DNA metabolism with nuclear and non-nuclear processes. The DDR kinase Rad53 controls histone degradation to assist DNA repair. However, Rad53 deficiency causes histone-dependent growth defects in the absence of DNA damage, pointing out unknown physiological functions of the Rad53-histone axis.

View Article and Find Full Text PDF

The mTOR inhibitor everolimus is effective against advanced pancreatic neuroendocrine tumors (pNETs). However, it can cause metabolic adverse events, such as hyperglycemia, hypertriglyceridemia and hypercholesterolemia. In this work we aimed at evaluating the impact of systemic and tumor lipid metabolism on everolimus efficacy.

View Article and Find Full Text PDF

Replication stress activates the Mec1(ATR) and Rad53 kinases. Rad53 phosphorylates nuclear pores to counteract gene gating, thus preventing aberrant transitions at forks approaching transcribed genes. Here, we show that Rrm3 and Pif1, DNA helicases assisting fork progression across pausing sites, are detrimental in rad53 mutants experiencing replication stress.

View Article and Find Full Text PDF