Background: The persistence of a replication-competent latent viral reservoir (RC-LVR) during antiretroviral therapy (ART) is a barrier to the development of a cure for HIV-1, but the role of viral genes in influencing RC-LVR size is unclear. We aimed to assess whether the magnitude by which the HIV-1 accessory protein Nef evades the adaptive immune response by downregulating MHC-I or CD4, or both, from the surface of infected cells is associated with the rate at which the RC-LVR in people with HIV-1 changes during long-term ART (>1 year).
Methods: We conducted an exploratory cohort study in which nef genes were sequenced from outgrowth viruses derived from the quantitative viral outgrowth assay (QVOA) for a group of people with ART-suppressed HIV-1 in Uganda between 2015 and 2020.
Hemagglutinin (HA) and neuraminidase (NA) proteins are the primary antigenic targets of influenza A virus (IAV) infections. IAV infections are generally classified into subtypes of HA and NA proteins, e.g.
View Article and Find Full Text PDFTiming of human immunodeficiency virus-1 (HIV-1) reservoir formation is important for informing HIV cure efforts. It is unclear how much of the variability seen in dating reservoir formation is due to sampling and gene-specific differences. We used a Bayesian extension of root to tip regression (bayroot) to reestimate formation date distributions in participants from Swedish and South African cohorts, and assessed the impact of variable timing, frequency, and depth of sampling on these estimates.
View Article and Find Full Text PDFWastewater-based surveillance (WBS) is an important epidemiological and public health tool for tracking pathogens across the scale of a building, neighbourhood, city, or region. WBS gained widespread adoption globally during the SARS-CoV-2 pandemic for estimating community infection levels by qPCR. Sequencing pathogen genes or genomes from wastewater adds information about pathogen genetic diversity, which can be used to identify viral lineages (including variants of concern) that are circulating in a local population.
View Article and Find Full Text PDFThe COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts.
View Article and Find Full Text PDFBackground: The principal barrier to an HIV cure is the presence of the latent viral reservoir (LVR), which has been understudied in African populations. From 2018 to 2019, Uganda instituted a nationwide rollout of ART consisting of Dolutegravir (DTG) with two NRTI, which replaced the previous regimen of one NNRTI and the same two NRTI.
Methods: Changes in the inducible replication-competent LVR (RC-LVR) of ART-suppressed Ugandans with HIV (n = 88) from 2015 to 2020 were examined using the quantitative viral outgrowth assay.
Wastewater surveillance of coronavirus disease 2019 (COVID-19) commonly applies reverse transcription-quantitative polymerase chain reaction (RT-qPCR) to quantify severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA concentrations in wastewater over time. In most applications worldwide, maximal sensitivity and specificity of RT-qPCR has been achieved, in part, by monitoring two or more genomic loci of SARS-CoV-2. In Ontario, Canada, the provincial Wastewater Surveillance Initiative reports the average copies of the CDC N1 and N2 loci normalized to the fecal biomarker pepper mild mottle virus.
View Article and Find Full Text PDFThe timing of the establishment of the HIV latent viral reservoir (LVR) is of particular interest, as there is evidence that proviruses are preferentially archived at the time of antiretroviral therapy (ART) initiation. Quantitative viral outgrowth assays (QVOAs) were performed using Peripheral Blood Mononuclear Cells (PBMC) collected from Ugandans living with HIV who were virally suppressed on ART for >1 year, had known seroconversion windows, and at least two archived ART-naïve plasma samples. QVOA outgrowth populations and pre-ART plasma samples were deep sequenced for the and genes.
View Article and Find Full Text PDFNef is an accessory protein unique to the primate HIV-1, HIV-2, and SIV lentiviruses. During infection, Nef functions by interacting with multiple host proteins within infected cells to evade the immune response and enhance virion infectivity. Notably, Nef can counter immune regulators such as CD4 and MHC-I, as well as the SERINC5 restriction factor in infected cells.
View Article and Find Full Text PDFThe principal barrier to an HIV cure is the presence of a latent viral reservoir (LVR) made up primarily of latently infected resting CD4+ (rCD4) T-cells. Studies in the United States have shown that the LVR decays slowly (half-life=3.8 years), but this rate in African populations has been understudied.
View Article and Find Full Text PDFDefining clusters of epidemiologically related infections is a common problem in the surveillance of infectious disease. A popular method for generating clusters is pairwise distance clustering, which assigns pairs of sequences to the same cluster if their genetic distance falls below some threshold. The result is often represented as a network or graph of nodes.
View Article and Find Full Text PDFGenetic sequencing is subject to many different types of errors, but most analyses treat the resultant sequences as if they are known without error. Next generation sequencing methods rely on significantly larger numbers of reads than previous sequencing methods in exchange for a loss of accuracy in each individual read. Still, the coverage of such machines is imperfect and leaves uncertainty in many of the base calls.
View Article and Find Full Text PDFGene overlap occurs when two or more genes are encoded by the same nucleotides. This phenomenon is found in all taxonomic domains, but is particularly common in viruses, where it may provide a mechanism to increase the information content of compact genomes. The presence of overlapping reading frames (OvRFs) can skew estimates of selection based on the rates of non-synonymous and synonymous substitutions, since a substitution that is synonymous in one reading frame may be non-synonymous in another and vice versa.
View Article and Find Full Text PDFCurr Protoc
February 2023
The comparative analysis of amino acid sequences is an important tool in molecular biology that often requires multiple sequence alignments. In comparisons between less closely related genomes, however, it becomes more difficult to accurately align protein-coding sequences, or even to identify homologous regions in different genomes. In this article, we describe an alignment-free method for the classification of homologous protein-coding regions from different genomes.
View Article and Find Full Text PDFThe composition of the latent human immunodeficiency virus 1 (HIV-1) reservoir is shaped by when proviruses integrated into host genomes. These integration dates can be estimated by phylogenetic methods like root-to-tip (RTT) regression. However, RTT does not accommodate variation in the number of mutations over time, uncertainty in estimating the molecular clock, or the position of the root in the tree.
View Article and Find Full Text PDFClusters of genetically similar infections suggest rapid transmission and may indicate priorities for public health action or reveal underlying epidemiological processes. However, clusters often require user-defined thresholds and are sensitive to non-epidemiological factors, such as non-random sampling. Consequently the ideal threshold for public health applications varies substantially across settings.
View Article and Find Full Text PDFCombining clinical and genetic data can improve the effectiveness of virus tracking with the aim of reducing the number of HIV cases by 2030.
View Article and Find Full Text PDFTracking the emergence and spread of SARS-CoV-2 lineages using phylogenetics has proven critical to inform the timing and stringency of COVID-19 public health interventions. We investigated the effectiveness of international travel restrictions at reducing SARS-CoV-2 importations and transmission in Canada in the first two waves of 2020 and early 2021. Maximum likelihood phylogenetic trees were used to infer viruses' geographic origins, enabling identification of 2263 (95% confidence interval: 2159-2366) introductions, including 680 (658-703) Canadian sublineages, which are international introductions resulting in sampled Canadian descendants, and 1582 (1501-1663) singletons, introductions with no sampled descendants.
View Article and Find Full Text PDFWastewater surveillance has rapidly emerged as an early warning tool to track COVID-19. However, the early warning measurement of new SARS-CoV-2 variants of concern (VOCs) in wastewaters remains a major challenge. We herein report a rapid analytical strategy for quantitative measurement of VOCs, which couples nested polymerase chain reaction and liquid chromatography-mass spectrometry (nPCR-LC-MS).
View Article and Find Full Text PDFThe prevailing abundance of full-length HIV type 1 (HIV-1) genome sequences provides an opportunity to revisit the standard model of HIV-1 group M (HIV-1/M) diversity that clusters genomes into largely nonrecombinant subtypes, which is not consistent with recent evidence of deep recombinant histories for simian immunodeficiency virus (SIV) and other HIV-1 groups. Here we develop an unsupervised nonparametric clustering approach, which does not rely on predefined nonrecombinant genomes, by adapting a community detection method developed for dynamic social network analysis. We show that this method (dynamic stochastic block model [DSBM]) attains a significantly lower mean error rate in detecting recombinant breakpoints in simulated data (quasibinomial generalized linear model (GLM), P<8×10−8), compared to other reference-free recombination detection programs (genetic algorithm for recombination detection [GARD], recombination detection program 4 [RDP4], and RDP5).
View Article and Find Full Text PDFGene overlap occurs when two or more genes are encoded by the same nucleotides. This phenomenon is found in all taxonomic domains, but is particularly common in viruses, where it may increase the information content of compact genomes or influence the creation of new genes. Here we report a global comparative study of overlapping open reading frames (OvRFs) of 12,609 virus reference genomes in the NCBI database.
View Article and Find Full Text PDFThe shape of phylogenetic trees can be used to gain evolutionary insights. A tree's shape specifies the connectivity of a tree, while its branch lengths reflect either the time or genetic distance between branching events; well-known measures of tree shape include the Colless and Sackin imbalance, which describe the asymmetry of a tree. In other contexts, network science has become an important paradigm for describing structural features of networks and using them to understand complex systems, ranging from protein interactions to social systems.
View Article and Find Full Text PDF