Asparagus ( L. is an important vegetable crop in southern Ontario, Canada, where winter air and soil temperatures below 0°C are common. Consequently, cultivars growing in this area must possess winterhardiness and freezing tolerance for survival.
View Article and Find Full Text PDFLiquid electronics have potential applications in soft robotics, printed electronics, and healable electronics. The intrinsic shortcomings of solid-state electronics can be offset by liquid conductors. Alloys of gallium have emerged as transformative materials for liquid electronics owing to their intrinsic fluidity, conductivity, and low toxicity.
View Article and Find Full Text PDFCell-based iron overload models provide tremendous utility for the investigations into the pathogenesis of different diseases as well as assessing efficacy of various therapeutic strategies. In the literature, establishing such models vary widely with regards to cell lines, iron source, iron treatment conditions and duration. Due to this diversity, researchers reported significant differences in the measured outcomes, either in cellular function or response to a stimulus.
View Article and Find Full Text PDFIn this communication, we have deciphered the geometric self-sorting of pillar[]arenes by analyzing the fluid flow pattern obtained during the self-assembly of complementary pillar[]arenes on the surface. The concept was further extended to demonstrate flow manipulation inside a microchannel where multiple sites were available for self-sorting, and the resultant flow velocity was tuned by the feeding ratio of the complementary pairs.
View Article and Find Full Text PDFThe amplification of weak molecular signals to visible output could provide a gateway to the macroscopic world. In this context, supramolecular interfaces were designed by depositing macrocyclic "host" molecules in a multilayer film that can be utilized to discriminate isomers by their fluid flow response upon "host-guest" molecular recognition.
View Article and Find Full Text PDFThe current scenario of antibiotic-resistant bacteria and pandemics caused by viruses makes research in the area of antibacterial and antiviral materials and surfaces more urgent than ever. In this regard, salicylideneimine based tetracoordinate boron-containing organic compounds are emerging as a new class of photosensitizers for singlet oxygen generation. However, the inherent inability of small organic molecules to be processed limits their potential use in functional coatings.
View Article and Find Full Text PDFLiver dysfunction and failure account for a major portion of premature deaths in patients suffering from various iron associated pathogeneses, particularly primary and secondary iron overload disorders, despite intensive treatment. The liver is a central player in iron homeostasis and a major iron storage organ, and currently, there are no active approaches for the excretion of excess liver iron. Herein, we report a new method for the rapid reduction of iron burden in iron overload diseases by developing a new class of liver targeted nanochelators with favorable pharmacokinetics and biodistribution.
View Article and Find Full Text PDFSelf-powered supramolecular micropumps could potentially provide a solution for powerless microfluidic devices where the fluid flow can be manipulated modulating non-covalent interactions. An attempt has been made to fabricate thin-film-based micropumps by depositing a β-cyclodextrin ('host') functionalized polymer on a glass slide layer-by-layer assembly. These supramolecular micropumps turned on the fluid flow upon addition of 'guest' molecules to the multilayer films.
View Article and Find Full Text PDFThe liquid-liquid interface offers a fascinating avenue for generating hierarchical compartments. Herein, the dynamic imine chemistry is employed at the oil-water interface to investigate the effect of dynamic covalent bonds for modulating the droplet shape. The imine bond formation between oil-soluble aromatic aldehydes and water-soluble polyethyleneimine greatly stabilized the oil-water interface by substantially lowering the interfacial tension.
View Article and Find Full Text PDFThe polyanion, inorganic polyphosphate (polyP), is a procoagulant molecule which has become a promising therapeutic target in the development of antithrombotics. Neutralizing polyP's prothrombotic activity using polycationic inhibitors is one of the viable strategies to design new polyP inhibitors. However, in this approach, a fine balance between the electrostatic interaction of polyP and the inhibitor is needed.
View Article and Find Full Text PDFThe inhibitory effect of nucleotides on the catalytic activity of acetylcholine esterase (AChE) was rationalized and a similar inhibition trend was observed when analyzing the macroscopic fluid flow generated by surface immobilized AChE. Additionally, the demonstration of enzymatic micropumping by showing adenine-nucleotide responsive AChE actuated fluid flow from blood plasma paved the way for designing future lab-on-a-chip devices in complex biological environments with potential clinical applications.
View Article and Find Full Text PDFIn view to develop an autonomous lab-on-a-chip device for detection of toxins without using any spectroscopic or electrochemical equipment, self-powered enzyme micropumps were fabricated via layer-by-layer assembly of enzymes and polyelectrolytes. The thin film-based enzyme micropumps turned on fluid flow in the presence of respective substrates in a concentration-dependent manner, and the rate of the enzymatic reaction was the key for maneuvering the fluid flow. Furthermore, the newly engineered enzyme-based micropumps were able to detect toxic metals and organophosphorus pesticides by modulating the fluid flow speed as the rate of the enzymatic reaction was altered by the presence of inhibitors.
View Article and Find Full Text PDFMimicking microorganism's locomotion and actuation under fluid is difficult to realize. To better comprehend the motility in non-living matter, self-propelled synthetic systems are being developed as a fast-growing area of research. Inspired by the self-powered enzyme micropumps where the enzyme catalysis was harnessed to create motion, herein, enzyme-immobilized microfluidic microcapsules (MCs) were used as a microscale engine to maneuver the fluid flow.
View Article and Find Full Text PDFThe non-equilibrium liquid structure was achieved by interfacial jamming of pillar[5]arene carboxylic acid (P[5]AA) mediated by hydrogen bonding interactions. The assembly was reversibly modulated jamming to unjamming transition thus dynamically shaping the liquid droplets. Interestingly, these supramolecular constructs showed pH-switchable gated diffusion of encapsulants, hence showcasing a next generation smart release system.
View Article and Find Full Text PDFBacterial adhesion and the succeeding biofilm formation onto surfaces are responsible for implant- and device-associated infections. Bifunctional coatings integrating both nonfouling components and antimicrobial peptides (AMPs) are a promising approach to develop potent antibiofilm coatings. However, the current approaches and chemistry for such coatings are time-consuming and dependent on substrates and involve a multistep process.
View Article and Find Full Text PDFIron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently.
View Article and Find Full Text PDFGlobally, harmful algal blooms (HABs) are on the rise, as is evidence of their toxicity. The impacts associated with blooms, however, vary across Nation states, as do the strategies and protocols to assess, monitor, and manage their occurrence. In Canada, water quality guidelines are standardized nationally, but the management strategies for HABs are not.
View Article and Find Full Text PDFA valveless micropump was designed via dynamic supramolecular interaction between beta-cyclodextrin (β-CD) and benzimidazole (BzI). It shows flow reversal in response to the pH change. An L-shaped microchannel was used to demonstrate the flow reversibility over long distances.
View Article and Find Full Text PDFQuantification of iron is an important step to assess the iron burden in patients suffering from iron overload diseases, as well as tremendous value in understanding the underlying role of iron in the pathophysiology of these diseases. Current iron determination of total or labile iron, requires extensive sample handling and specialized instruments, whilst being time consuming and laborious. Moreover, there is minimal to no overlap between total iron and labile iron quantification methodologies-i.
View Article and Find Full Text PDFCatheter-associated urinary tract infections (CAUTIs) are one of the most commonly occurring hospital-acquired infections. Current coating strategies to prevent catheter-associated biofilm formation are limited by their poor long-term efficiency and limited applicability to diverse materials. Here, the authors report a highly effective non-fouling coating with long-term biofilm prevention activity and is applicable to diverse catheters.
View Article and Find Full Text PDFIron is an essential micronutrient for life. Its redox activity is a key component in a plethora of vital enzymatic reactions that take place in processes such as drug metabolism, DNA synthesis, steroid synthesis, gene regulation, and cellular respiration (oxygen transport and the electron transport chain). Bacteria are highly dependent on iron for their survival and growth and have specific mechanisms to acquire iron.
View Article and Find Full Text PDFChronic transfusion of red blood cells (RBCs) to patients with β-thalassemia, sickle cell disease, and other acquired anemic disorders generates significant amounts of bioactive iron deposits in the body. The inactivation and excretion of redox active iron(III) from the blood pool and organs are critical to prevent organ damage, and are the focus of iron chelation therapy (ICT) using low molecular weight Fe(III) specific chelators. However, the current ICT is suboptimal because of the short circulation time of chelators, toxicity, severe side effects, difficult regime of administration, and patient noncompliance.
View Article and Find Full Text PDFExpert Opin Pharmacother
February 2015
Introduction: Central nervous system infection continues to be an important cause of mortality and morbidity worldwide. Our incomplete knowledge on the pathogenesis of how meningitis-causing pathogens cause CNS infection and emergence of antimicrobial resistance has contributed to the mortality and morbidity. An early empiric antibiotic treatment is critical for the management of patients with bacterial meningitis, but early recognition of bacterial meningitis continues to be a challenge.
View Article and Find Full Text PDF