Publications by authors named "Arshath Abdul Rahim"

Pesticide nanoencapsulation and its foliar application are promising approaches for improving the efficiency of current pesticide application practices, whose losses can reach 99%. Here, we investigated the uptake and translocation of azoxystrobin, a systemic pesticide, encapsulated within porous hollow silica nanoparticles (PHSNs) of a mean diameter of 253 ± 73 nm, following foliar application on tomato plants. The PHSNs had 67% loading efficiency for azoxystrobin and enabled its controlled release over several days.

View Article and Find Full Text PDF

Arsenic (As) is highly toxic in its inorganic form. It is naturally presented at elevated levels in the groundwater of a number of countries and contaminates drinking water sources, generating numerous health and environmental problems. Current methodologies for its remediation have deficiencies which fuel the constant exploration of new alternatives.

View Article and Find Full Text PDF

Hydrocarbon and salt contamination of surface and groundwater resources often co-occur from oil production activities. However, salt is often considered as a potential inhibitor of microbial activity. The feasibility of microbiome-based biotechnologies to treat the hydrocarbon contamination is contingent on the ability of the indigenous community to adapt to saline conditions.

View Article and Find Full Text PDF

Nanoparticles composed of ZnO encapsulated in a mesoporous SiO shell (nZnO@SiO) with a primary particle diameter of ∼70 nm were synthesized for delivery of Zn, a micronutrient, by foliar uptake. Compared to the rapid dissolution of bare nZnO (90% Zn dissolution after 4 h) in a model plant media (pH = 5), nZnO@SiO released Zn more slowly (40% Zn dissolution after 3 weeks), thus enabling sustained Zn delivery over a longer period. nZnO@SiO, nZnO, and ZnCl were exposed to by dosing 40 μg of Zn micronutrient (in a 20 μL suspension) on a single leaf.

View Article and Find Full Text PDF

Silver (nAg) and titanium dioxide nanoparticles (nTiO) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test).

View Article and Find Full Text PDF

Attached-growth wastewater processes are currently used in water resource recovery facilities (WRRFs) for required upgrades due to an increase in influent loading or to reach more stringent discharge criteria. Yet, the distribution and long-term inhibitory effects of silver nanoparticles (AgNPs) in attached-growth biological wastewater processes and their impact on involved microbial communities are poorly understood at relevant, low concentrations. Retention, distribution, and long-term inhibitory effect of polyvinylpyrrolidone (PVP)-coated AgNPs were evaluated in bench-scale moving bed biofilm reactors (MBBRs), achieving soluble organic matter removal, over a 64 day exposure to nominal concentrations of 10 and 100 μg/L.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionnrntpfjdcij7eihporu2dr8jb5fl7pmf): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once