Publications by authors named "Arseniy V Aybush"

Surface-enhanced Raman scattering (SERS) is considered an efficient technique providing high sensitivity and fingerprint specificity for the detection of pesticide residues. Recent developments in SERS-based detection aim to create flexible plasmonic substrates that meet the requirements for non-destructive analysis of contaminants on curved surfaces by simply wrapping or wiping. Herein, we reported a flexible SERS substrate based on cellulose fiber (CF) modified with silver nanostructures (AgNS).

View Article and Find Full Text PDF

Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Q band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Q→Q (electronic transition S→S) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.

View Article and Find Full Text PDF

This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll (Chl ) molecules, including six specialized Chls denoted Chl/Chl (dimer P, or PP), Chl/Chl, and Chl/Chl arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P is electronically coupled to the symmetrically located monomers Chl and Chl, which can be considered together as a symmetric exciplex ChlPPChl with the mixed excited (ChlPPChl) and two charge-transfer states P Chl and P Chl .

View Article and Find Full Text PDF

Background: Despite the introduction of direct oral anticoagulants, the search for new oral anticoagulants remains an urgent task.

Objective: By using docking and scoring, based on physical methods, simple chemical rules, methods of synthesis, and activity measurement, develop new low-molecular-weight inhibitors of factor Xa, which are potential anticoagulants.

Methods: The development of leads was based on chemical synthesis and structure-based drug design methods.

View Article and Find Full Text PDF

In Photosystem I (PS I), the role of the accessory chlorophyll (Chl) molecules, Chl and Chl (also termed A and A), which are directly adjacent to the special pair P and fork into the A- and B-branches of electron carriers, is incompletely understood. In this work, the Chl and Chl transient absorption ΔA(λ) at a time delay of 100 fs was identified by ultrafast pump-probe spectroscopy in three pairs of PS I complexes from Synechocystis sp. PCC 6803 with residues PsaA-N600 or PsaB-N582 (which ligate Chl or Chl through a HO molecule) substituted by Met, His, and Leu.

View Article and Find Full Text PDF

The Photosystem I (PSI) reaction center in cyanobacteria is comprised of ~96 chlorophyll (Chl) molecules, including six specialized Chl molecules denoted Chl1A/Chl1B (P), Chl2A/Chl2B, and Chl3A/Chl3B that are arranged in two branches and function in primary charge separation. It has recently been proposed that PSI from Chroococcidiopsis thermalis (Nürnberg et al. (2018) Science 360, 1210-1213) and Fischerella thermalis PCC 7521 (Hastings et al.

View Article and Find Full Text PDF

The energy and charge-transfer processes in photosystem I (PS I) complexes isolated from cyanobacteria Thermosynechococcus elongatus and Synechocystis sp. PCC 6803 were investigated by pump-to-probe femtosecond spectroscopy. The formation of charge-transfer (CT) states in excitonically coupled chlorophyll a complexes (exciplexes) was monitored by measuring the electrochromic shift of β-carotene in the spectral range 500-510 nm.

View Article and Find Full Text PDF

Background: Factor Xa (FXa) is known to play a central role in blood coagulation cascade and considered to be one of the most attractive targets for oral anticoagulants of new generation.

Objective: Our approach for the development of directly acting oral anticoagulants (DOAC), FXa inhibitors was demonstrated in this work.

Method: Chemical synthesis is the base of our approach for the development of potential inhibitors.

View Article and Find Full Text PDF

The ultrafast primary charge separation in Photosystem I (PS I) excited by femtosecond pulses centered at 720 and 760nm was studied by pump-to-probe laser spectroscopy. The absorbance in the red edge of PS I absorption spectrum has an unusual exponential dependence on wavelength. The cutoff of short wavelength components of 760nm pulse allows direct excitation of reaction center chlorophyll molecules without involvement of light-harvesting antenna.

View Article and Find Full Text PDF