A comprehensive understanding of the ligand field and its influence on the degeneracy and population of -orbitals in a specific coordination environment are crucial for the rational design and enhancement of magnetic anisotropy of single-ion magnets (SIMs). Herein, we report the synthesis and comprehensive magnetic characterization of a highly anisotropic Co SIM, [LCo](TBA) (L is an ,'-chelating oxanilido ligand), that is stable under ambient conditions. Dynamic magnetization measurements show that this SIM exhibits a large energy barrier to spin reversal > 300 K and magnetic blocking up to 3.
View Article and Find Full Text PDFIn this work, the magnetic anisotropy in two iso-structural distorted tetrahedral Co(II) complexes, Co tmtu [ = Cl() and Br(), tmtu = tetra-methyl-thio-urea] is investigated, using a combination of polarized neutron diffraction (PND), very low-temperature high-resolution synchrotron X-ray diffraction and CASSCF/NEVPT2 calculations. Here, it was found consistently among all methods that the compounds have an easy axis of magnetization pointing nearly along the bis-ector of the compression angle, with minute deviations between PND and theory. Importantly, this work represents the first derivation of the atomic susceptibility tensor based on powder PND for a single-molecule magnet and the comparison thereof with calculations and high-resolution X-ray diffraction.
View Article and Find Full Text PDFA new crystallographic method is proposed in order to refine a spin-resolved atomic orbital model against X-ray and polarized neutron diffraction data. This atomic orbital model is applied to the YTiO perovskite crystal, where orbital ordering has previously been observed by several techniques: X-ray diffraction, polarized neutron diffraction and nuclear magnetic resonance. This method gives the radial extension, orientation and population of outer atomic orbitals for each atom.
View Article and Find Full Text PDFThe present work reports on the charge and spin density modelling of YTiO in its ferromagnetic state ( = 27 K). Accurate polarized neutron diffraction and high-resolution X-ray diffraction (XRD) experiments were carried out on a single crystal at the ORPHÉE reactor (LLB) and SPRING8 synchrotron source. The experimental data are modelled by the spin resolved pseudo-atomic multipolar model (Deutsch , 2012 ▸).
View Article and Find Full Text PDFThe anisotropy of the magnetic properties of molecular magnets is a key descriptor in the search for improved magnets. Herein, it is shown how an analytical approach using single-crystal polarized neutron diffraction (PND) provides direct access to atomic magnetic susceptibility tensors. The technique was applied for the first time to two Dy-based single-molecule magnets and showed clear axial atomic susceptibility for both Dy ions.
View Article and Find Full Text PDFThe compound [Formula: see text] is magnetoelectric but not multiferroic with an erythrosiderite-related structure. We present a comprehensive investigation of its structural and antiferromagnetic phase transitions by polarization microscopy, pyroelectric measurements, x-ray diffraction and neutron diffraction. At about [Formula: see text] K, the compound changes its symmetry from Cmcm to I2/c, with a doubling of the original c-axis.
View Article and Find Full Text PDFWe observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.
View Article and Find Full Text PDFPolarized neutron diffraction (PND) experiments were carried out at low temperature to characterize with high precision the local magnetic anisotropy in two paramagnetic high-spin cobalt(II) complexes, namely [Co(II) (dmf)6 ](BPh4 )2 (1) and [Co(II) 2 (sym-hmp)2 ](BPh4 )2 (2), in which dmf=N,N-dimethylformamide; sym-hmp=2,6-bis[(2-hydroxyethyl)methylaminomethyl]-4-methylphenolate, and BPh4 (-) =tetraphenylborate. This allowed a unique and direct determination of the local magnetic susceptibility tensor on each individual Co(II) site. In compound 1, this approach reveals the correlation between the single-ion easy magnetization direction and a trigonal elongation axis of the Co(II) coordination octahedron.
View Article and Find Full Text PDFThe intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated.
View Article and Find Full Text PDF