Radiol Artif Intell
March 2023
Purpose: To develop, implement, and evaluate feedback for an artificial intelligence (AI) workshop for radiology residents that has been designed as a condensed introduction of AI fundamentals suitable for integration into an existing residency curriculum.
Materials And Methods: A 3-week AI workshop was designed by radiology faculty, residents, and AI engineers. The workshop was integrated into curricular academic half-days of a competency-based medical education radiology training program.
Objective: We examined the effect of a simple Delphi-method feedback on visual identification of high frequency oscillations (HFOs) in the ripple (80-250 Hz) band, and assessed the impact of this training intervention on the interrater reliability and generalizability of HFO evaluations.
Methods: We employed a morphology detector to identify potential HFOs at two thresholds and presented them to visual reviewers to assess the probability of each epoch containing an HFO. We recruited 19 board-certified epileptologists with various levels of experience to complete a series of HFO evaluations during three sessions.
Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.
View Article and Find Full Text PDFUnlabelled: Mossy fiber afferents to cerebellar granule cells form the primary synaptic relay into cerebellum, providing an ideal site to process signal inputs differentially. Mossy fiber input is known to exhibit a long-term potentiation (LTP) of synaptic efficacy through a combination of presynaptic and postsynaptic mechanisms. However, the specific postsynaptic mechanisms contributing to LTP of mossy fiber input is unknown.
View Article and Find Full Text PDFOur previous work reported that KCa3.1 (IKCa) channels are expressed in CA1 hippocampal pyramidal cells and contribute to the slow afterhyperpolarization that regulates spike accommodation in these cells. The current report presents data from single cell RT-PCR that further reveals mRNA in CA1 cells that corresponds to the sequence of an IKCa channel from transmembrane segments 5 through 6 including the pore region, revealing the established binding sites for 4 different IKCa channel blockers.
View Article and Find Full Text PDFControl over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells.
View Article and Find Full Text PDFThe cerebellum receives sensory information by mossy fiber input from a multitude of sources that require differential signal processing. A compartmentalization of function begins with the segregation of mossy fibers across 10 distinct lobules over the rostrocaudal axis, with tactile receptor afferents prevalent in anterior lobules and vestibular input in caudal lobules. However, it is unclear how these unique signals might be differentially processed at the circuit level across the cerebellum.
View Article and Find Full Text PDF