Publications by authors named "Arron Hearn"

Background: Metastasis to the brain is a major challenge with poor prognosis. The blood-brain barrier (BBB) is a significant impediment to effective treatment, being intact during the early stages of tumor development and heterogeneously permeable at later stages. Intravenous injection of tumor necrosis factor (TNF) selectively induces BBB permeabilization at sites of brain micrometastasis, in a TNF type 1 receptor (TNFR1)-dependent manner.

View Article and Find Full Text PDF

Acetaminophen (-acetyl--aminophenol; APAP) toxicity is a common cause of liver damage. In the mouse model of APAP-induced liver injury (AILI), interleukin 11 (IL11) is highly up-regulated and administration of recombinant human IL11 (rhIL11) has been shown to be protective. Here, we demonstrate that the beneficial effect of rhIL11 in the mouse model of AILI is due to its inhibition of endogenous mouse IL11 activity.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a formidable obstacle for delivery of biologic therapeutics to central nervous system (CNS) targets. Whilst the BBB prevents passage of the vast majority of molecules, it also selectively transports a wide variety of molecules required to maintain brain homeostasis. Receptor-mediated transcytosis is one example of a macromolecule transport system that is employed by cells of the BBB to supply essential proteins to the brain and which can be utilized to deliver biologic payloads, such as antibodies, across the BBB.

View Article and Find Full Text PDF

Fungal ribotoxins that block protein synthesis can be useful warheads in the context of a targeted immunotoxin. α-Sarcin is a small (17 kDa) fungal ribonuclease produced by Aspergillus giganteus that functions by catalytically cleaving a single phosphodiester bond in the sarcin-ricin loop of the large ribosomal subunit, thus making the ribosome unrecognisable to elongation factors and leading to inhibition of protein synthesis. Peptide mapping using an ex vivo human T cell assay determined that α-sarcin contained two T cell epitopes; one in the N-terminal 20 amino acids and the other in the C-terminal 20 amino acids.

View Article and Find Full Text PDF

All three members of the oxytocinase subfamily of M1 aminopeptidases, endoplasmic reticulum aminopeptidase 1 (ERAP1), ERAP2, and placental leucine aminopeptidase (PLAP), also known as insulin-regulated aminopeptidase, have been implicated in the generation of MHC class I-presented peptides. ERAP1 and 2 trim peptides in the endoplasmic reticulum for direct presentation, whereas PLAP has been recently implicated in cross-presentation. The best characterized member of the family, ERAP1, has unique enzymatic properties that fit well with its role in Ag processing.

View Article and Find Full Text PDF

Many MHC class I-binding peptides are generated as N-extended precursors during protein degradation by the proteasome. These peptides can subsequently be trimmed by aminopeptidases in the cytosol and/or the endoplasmic reticulum (ER) to produce mature epitope. However, the contribution and specificity of each of these subcellular compartments in removing N-terminal amino acids for Ag presentation is not well defined.

View Article and Find Full Text PDF

Previous experiments using enzyme inhibitors and RNA interference in cell lysates and cultured cells have suggested that tripeptidyl peptidase II (TPPII) plays a role in creating and destroying MHC class I-presented peptides. However, its precise contribution to these processes has been controversial. To elucidate the importance of TPPII in MHC class I Ag presentation, we analyzed TPPII-deficient gene-trapped mice and cell lines from these animals.

View Article and Find Full Text PDF

Aminopeptidases in the endoplasmic reticulum (ER) can cleave antigenic peptides and in so doing either create or destroy MHC class I-presented epitopes. However, the specificity of this trimming process overall and of the major ER aminopeptidase ERAP1 in particular is not well understood. This issue is important because peptide trimming influences the magnitude and specificity of CD8 T cell responses.

View Article and Find Full Text PDF

While it is known that monosodium urate (MSU) crystals cause the disease gout, the mechanism by which these crystals stimulate this inflammatory condition has not been clear. Here we find that the Toll/IL-1R (TIR) signal transduction adaptor myeloid differentiation primary response protein 88 (MyD88) is required for acute gouty inflammation. In contrast, other TIR adaptor molecules, TIRAP/Mal, TRIF, and TRAM, are not required for this process.

View Article and Find Full Text PDF

It has long been known that immunization with a protein by itself is often not sufficient to stimulate immunity, and may instead induce tolerance. To elicit productive immune responses exogenous adjuvants need to be co-injected with an antigen. One important class of adjuvants are the unique (non-mammalian) components of microbes.

View Article and Find Full Text PDF

The B-subunit component of Escherichia coli heat-labile enterotoxin (EtxB), which binds to cell surface GM1 ganglioside receptors, was recently shown to be a highly effective vehicle for delivery of conjugated peptides into the major histocompatibility complex (MHC) class I pathway. In this study we have investigated the pathway of epitope delivery. The peptides used contained the epitope either located at the C terminus or with a C-terminal extension.

View Article and Find Full Text PDF

Proteasomes are the major nonlysosomal protein degradation machinery in eukaryotic cells and they are largely responsible for the processing of antigens for presentation by the MHC class I pathway. This review concentrates on recent developments in the area of antigen processing. Specialized proteasomes called immunoproteasomes and an 11S regulator of proteasomes (PA28) are induced by interferon-gamma, but it is not entirely clear why changes in proteasome structure are beneficial for antigen presentation.

View Article and Find Full Text PDF

The homopentameric B-subunit components of Escherichia coli heat-labile enterotoxin (EtxB) and cholera toxin (CtxB) possess the capacity to enter mammalian cells and to activate cell-signaling events in leukocytes that modulate immune cell function. Both properties have been attributed to the ability of the B subunits to bind to GM1-ganglioside receptors, a ubiquitous glycosphingolipid found in the plasma membrane. Here we describe the properties of EtxB(H57S), a mutant B subunit with a His-->Ser substitution at position 57.

View Article and Find Full Text PDF

Current immunization strategies, using peptide or protein antigens, generally fail to elicit cytotoxic-T-lymphocyte responses, since these antigens are unable to access intracellular compartments where loading of major histocompatibility complex class I (MHC-I) molecules occurs. In an attempt to circumvent this, we investigated whether the GM1 receptor-binding B subunit of Escherichia coli heat-labile toxin (EtxB) could be used to deliver class I epitopes. When a class I epitope was conjugated to EtxB, it was delivered into the MHC-I presentation pathway in a GM1-binding-dependent fashion and resulted in the appearance of MHC-I-epitope complexes at the cell surface.

View Article and Find Full Text PDF

Cholera toxin and E. coli heat-labile enterotoxin are structurally homologous proteins comprised of an enzymatically active A-subunit and five B-subunits that bind with high affinity to GM1-ganglioside receptors found on the surface of mammalian cells. The B-subunits have long been thought of simply as trafficking vehicles that trigger entry and subsequent delivery of the 'toxic' A-subunit into cells.

View Article and Find Full Text PDF