Publications by authors named "Arroja M"

The counter-regulatory axis, Angiotensin Converting Enzyme 2, Angiotensin-(1-7), Mas receptor (ACE2/Ang-1-7/MasR), of the renin angiotensin system (RAS) is a potential therapeutic target in stroke, with Ang-(1-7) reported to have neuroprotective effects in pre-clinical stroke models. Here, an extensive investigation of the functional and mechanistic effects of Ang-(1-7) was performed in a rodent model of stroke. Using longitudinal magnetic resonance imaging (MRI) it was observed that central administration of Ang-(1-7) following transient middle cerebral artery occlusion (MCAO) increased the amount of tissue salvage compared to reperfusion alone.

View Article and Find Full Text PDF

Over the past forty years, animal models of focal cerebral ischaemia have allowed us to identify the critical cerebral blood flow thresholds responsible for irreversible cell death, electrical failure, inhibition of protein synthesis, energy depletion and thereby the lifespan of the potentially salvageable penumbra. They have allowed us to understand the intricate biochemical and molecular mechanisms within the 'ischaemic cascade' that initiate cell death in the first minutes, hours and days following stroke. Models of permanent, transient middle cerebral artery occlusion and embolic stroke have been developed each with advantages and limitations when trying to model the complex heterogeneous nature of stroke in humans.

View Article and Find Full Text PDF

The renin angiotensin system (RAS) consists of the systemic hormone system, critically involved in regulation and homeostasis of normal physiological functions [i.e. blood pressure (BP), blood volume regulation], and an independent brain RAS, which is involved in the regulation of many functions such as memory, central control of BP and metabolic functions.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists wanted to find a way to protect the brain during surgeries that block blood flow for a short time, using a substance called rhEPO.* -
  • They tested this on rats by giving them rhEPO just before stopping blood flow in a part of their brains and checked for any damage after.* -
  • The results showed that rhEPO helped reduce brain swelling and other problems, but it didn’t seem to directly prevent brain cell death.*
View Article and Find Full Text PDF