Publications by authors named "Arregui G"

Purpose: Stereotactic body radiotherapy (SBRT) has become an excellent non-invasive alternative for many patients with primary renal cell carcinoma (RCC) and adrenal malignancies (AM). The aims of this study were to analyse how tumor-, patient- and treatment-related factors may influence the outcomes and side effects of SBRT and to assess its benefits as an alternative to surgery.

Methods: This retrospective, multicenter study included 25 lesions in 23 patients treated with SBRT using different devices (LINAC, CyberKnife and Tomotherapy).

View Article and Find Full Text PDF

Despite tremendous progress in research on self-assembled nanotechnological building blocks, such as macromolecules, nanowires and two-dimensional materials, synthetic self-assembly methods that bridge the nanoscopic to macroscopic dimensions remain unscalable and inferior to biological self-assembly. By contrast, planar semiconductor technology has had an immense technological impact, owing to its inherent scalability, yet it seems unable to reach the atomic dimensions enabled by self-assembly. Here, we use surface forces, including Casimir-van der Waals interactions, to deterministically self-assemble and self-align suspended silicon nanostructures with void features well below the length scales possible with conventional lithography and etching, despite using only conventional lithography and etching.

View Article and Find Full Text PDF

The quality factor, , of photonic resonators permeates most figures of merit in applications that rely on cavity-enhanced light-matter interaction such as all-optical information processing, high-resolution sensing, or ultralow-threshold lasing. As a consequence, large-scale efforts have been devoted to understanding and efficiently computing and optimizing the of optical resonators in the design stage. This has generated large know-how on the relation between physical quantities of the cavity, e.

View Article and Find Full Text PDF

We design and fabricate a grating coupler for interfacing suspended silicon photonic membranes with free-space optics while being compatible with single-step lithography and etching in 220 nm silicon device layers. The grating coupler design simultaneously and explicitly targets both high transmission into a silicon waveguide and low reflection back into the waveguide by means of a combination of a two-dimensional shape-optimization step followed by a three-dimensional parameterized extrusion. The designed coupler has a transmission of -6.

View Article and Find Full Text PDF

Nanophononics has the potential for information transfer, in an analogous manner to its photonic and electronic counterparts. The adoption of phononic systems has been limited, due to difficulties associated with the generation, manipulation, and detection of phonons, especially at GHz frequencies. Existing techniques often require piezoelectric materials with an external radiofrequency excitation that are not readily integrated into existing CMOS infrastructures, while nonpiezoelectric demonstrations have been inefficient.

View Article and Find Full Text PDF

Confining photons in cavities enhances the interaction between light and matter. In cavity optomechanics, this enables a wealth of phenomena ranging from optomechanically induced transparency to macroscopic objects cooled to their motional ground state. Previous work in cavity optomechanics employed devices where ubiquitous structural disorder played no role beyond perturbing resonance frequencies and quality factors.

View Article and Find Full Text PDF

Nanoelectro-opto-mechanical systems enable the synergistic coexistence of electrical, mechanical, and optical signals on a chip to realize new functions. Most of the technology platforms proposed for the fabrication of these systems so far are not fully compatible with the mainstream CMOS technology, thus, hindering the mass-scale utilization. We have developed a CMOS technology platform for nanoelectro-opto-mechanical systems that includes piezoelectric interdigitated transducers for electronic driving of mechanical signals and nanocrystalline silicon nanobeams for an enhanced optomechanical interaction.

View Article and Find Full Text PDF

Controlling vibrations in solids is crucial to tailor their elastic properties and interaction with light. Thermal vibrations represent a source of noise and dephasing for many physical processes at the quantum level. One strategy to avoid these vibrations is to structure a solid such that it possesses a phononic stop band, that is, a frequency range over which there are no available elastic waves.

View Article and Find Full Text PDF

We report optical transmission measurements on suspended silicon photonic-crystal waveguides, where one side of the photonic lattice is shifted by half a period along the waveguide axis. The combination of this glide symmetry and slow light leads to a strongly enhanced chiral light-matter interaction but the interplay between slow light and backscattering has not been investigated experimentally in such waveguides. We build photonic-crystal resonators consisting of glide-symmetric waveguides terminated by reflectors and use transmission measurements as well as evanescent coupling to map out the dispersion relation.

View Article and Find Full Text PDF

This retrospective study aimed to provide some clinical outcomes regarding effectiveness, toxicity, and quality of life in PCa patients treated with dose-escalated moderately hypofractionated radiation therapy (HFRT). Patients received HFRT to a total dose of 66 Gy in 22 fractions (3 Gy/fraction) delivered via volume modulated arc therapy (VMAT) in 2011-2016. Treatment effectiveness was measured by the biochemical failure-free survival rate.

View Article and Find Full Text PDF

Optomechanical crystal cavities (OMC) have rich perspectives for detecting and indirectly analysing biological particles, such as proteins, bacteria and viruses. In this work we demonstrate the working principle of OMCs operating under ambient conditions as a sensor of submicrometer particles by optically monitoring the frequency shift of thermally activated mechanical modes. The resonator has been specifically designed so that the cavity region supports a particular family of low modal-volume mechanical modes, commonly known as -pinch modes-.

View Article and Find Full Text PDF

Mercury (Hg) is extremely toxic for all living organisms. Hg-tolerant symbiotic rhizobia have the potential to increase legume tolerance, and to our knowledge, the mechanisms underlying Hg tolerance in rhizobia have not been investigated to date. Rhizobial strains of , bv.

View Article and Find Full Text PDF

The backscattering mean free path ξ, the average ballistic propagation length along a waveguide, quantifies the resistance of slow light against unwanted imperfections in the critical dimensions of the nanostructure. This figure of merit determines the crossover between acceptable slow-light transmission affected by minimal scattering losses and a strong backscattering-induced destructive interference when the waveguide length L exceeds ξ. Here, we calculate the backscattering mean free path for a topological photonic waveguide for a specific and determined amount of disorder and, equally relevant, for a fixed value of the group index n_{g} which is the slowdown factor of the group velocity with respect to the speed of light in vacuum.

View Article and Find Full Text PDF

The resonant enhancement of mechanical and optical interaction in optomechanical cavities enables their use as extremely sensitive displacement and force detectors. In this Letter, we demonstrate a hybrid magnetometer that exploits the coupling between the resonant excitation of spin waves in a ferromagnetic insulator and the resonant excitation of the breathing mechanical modes of a glass microsphere deposited on top. The interaction is mediated by magnetostriction in the ferromagnetic material and the consequent mechanical driving of the microsphere.

View Article and Find Full Text PDF

The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes.

View Article and Find Full Text PDF

Fundamental observations in physics ranging from gravitational wave detection to laser cooling of a nanomechanical oscillator into its quantum ground state rely on the interaction between the optical and the mechanical degrees of freedom. A key parameter to engineer this interaction is the spatial overlap between the two fields, optimized in carefully designed resonators on a case-by-case basis. Disorder is an alternative strategy to confine light and sound at the nanoscale.

View Article and Find Full Text PDF

Background: Glomus tumors are benign slow-growing hypervascular neoplasms. The role of radiosurgery for the treatment of these tumors has increased. The purpose of this study was to show our experience with glomus tumors and to analyze different prognostic factors.

View Article and Find Full Text PDF

Aim: To evaluate the influence of (11)C-choline PET/CT on radiotherapy planning in prostate cancer patients.

Background: Precise information on the extension of prostate cancer is crucial for the choice of an appropriate therapeutic strategy. (11)C-choline positron emission tomography ((11)C-choline PET/CT) has two roles in radiation oncology (RT): (1) patient selection for treatment and (2) target volume selection and delineation.

View Article and Find Full Text PDF

Objectives: The purpose of this report was to review our experience with stereotactic radiosurgery in the management of patients with residual neurocytomas after initial surgery.

Methods: Between October 1996 and December 2001, four patients with central neurocytoma were treated by surgery and subsequently underwent linear accelerator (LINAC) radiosurgery.

Results: Two of the patients were cured, one exhibited a significant reduction in tumour size and the fourth remains stable.

View Article and Find Full Text PDF