Publications by authors named "Arpita Ray-Sinha"

Background: Recent genetic studies have implicated p53 mutation as a significant risk factor for therapeutic failure in squamous cell carcinoma of the head and neck (SCCHN). However, in a recent meta-analysis in the literature of p53 from major anatomical subsites (larynx, oral cavity, oropharynx/hypopharynx), associations between patient survival and p53 status were ambiguous.

Methods: The authors examined a cohort of SCCHNs using a previously developed biomarker combination that likely predicts p53 status based on p53/MDM2 expression levels determined by immunohistochemistry (IHC).

View Article and Find Full Text PDF

MDM2 expression, combined with increased p53 expression, is associated with reduced survival in several cancers, but is particularly of interest in renal cell carcinoma (RCC) where evidence suggests the presence of tissue-specific p53/MDM2 pathway defects. We set out to identify MDM2-interacting proteins in renal cells that could act as mediators/targets of MDM2 oncogenic effects in renal cancers. We identified the non-metastatic cells 2, protein; NME2 (NDPK-B, NM23-B/-H2), a nucleoside diphosphate kinase, as an MDM2-interacting protein using both a proteomic-based strategy [affinity chromatography and tandem mass spectrometry [MS/MS] from HEK293 cells] and a yeast two-hybrid screen of a renal carcinoma cell-derived complementary DNA library.

View Article and Find Full Text PDF

Recent studies connect MDM2 with increased cell motility, invasion and/or metastasis proposing an MDM2-mediated ubiquitylation-dependent mechanism. Interestingly, in renal cell carcinoma (RCC) p53/MDM2 co-expression is associated with reduced survival which is independently linked with metastasis. We therefore investigated whether expression of p53 and/or MDM2 promotes aggressive cell phenotypes.

View Article and Find Full Text PDF

The presence of two basic amino acids strategically located within a single spanning transmembrane region has previously been shown to act as a signal for the endoplasmic reticulum associated degradation (ERAD) of several polypeptides. In contrast, the functionality of this degron motif within the context of a polytopic membrane protein has not been established. Using opsin as a model system, we have investigated the consequences of inserting the degron motif in the first of its seven transmembrane (TM) spans.

View Article and Find Full Text PDF

Background: Several mechanisms operate during mitosis to ensure accurate chromosome segregation. However, during tumour evolution these mechanisms go awry resulting in chromosome instability. While several lines of evidence suggest that mutations in adenomatous polyposis coli (APC) may promote chromosome instability, at least in colon cancer, the underlying mechanisms remain unclear.

View Article and Find Full Text PDF