Publications by authors named "Arpita Bharali"

: Porcine Circovirus 2 (PCV2) infection poses significant health and economic challenges to the global swine industry. The disease in pigs leads to lymphoid depletion, resulting in immunosuppression and increased susceptibility to co-infections with other bacterial and viral pathogens. This study evaluated the efficacy of two novel recombinant Newcastle disease virus (NDV) strain R2B vectored vaccines that express the cap gene of PCV2 alone and along with the transmembrane and cytoplasmic tail (TMCT) domains of the NDV F gene.

View Article and Find Full Text PDF

Background: India recorded the first outbreak of African swine fever (ASF) in North-eastern region (NER) in the year 2020.

Aim: The current study was undertaken to investigate the transmission of African swine fever virus (ASFV) in the wild boars of Northeast India, particularly of Assam.

Material And Methods: ASF suspected mortal tissue remains and blood samples of wild boars collected from different locations of Assam were screened for molecular detection of swine viruses which includes Classical swine fever virus, Porcine Circovirus 2, Porcine reproductive and respiratory syndrome virus and ASFV.

View Article and Find Full Text PDF

African swine fever virus (ASFV) entered the northeastern (NE) part of India early in 2020, causing huge economic loss to the piggery sector. Here, we are presenting a brief report on the draft genome sequence of an ASFV strain ABTCVSCK_ASF007 from Assam state of NE India belonging to genotype II.

View Article and Find Full Text PDF

Porcine circovirus-associated disease caused by porcine circovirus type 2 (PCV2) is a vital threat to the global pig industry. In this study, we have characterized the complete genome sequence of a PCV2 isolate, namely, Assam-01, belonging to the genotype PCV2d.

View Article and Find Full Text PDF

PCV2 is the primary etiological agent of porcine circovirus-associated diseases (PCVADs) which affect pigs worldwide. Currently, there is a worldwide genotype prevalence switch from PCV2b to PCV2d, which has led to increased virulence of the circulating virus strains leading to vaccine failures and selection pressure. In the present study, the PCV2 genotypes circulating in north eastern region (NER) of India particularly the states of Assam and Arunachal Pradesh was characterized by isolation, sequencing and phylogenetic analysis of gene.

View Article and Find Full Text PDF

African swine fever (ASF) is the most dreaded disease of pigs, which can cause mortality of up to 100%. Following disease outbreaks with high mortality in pigs in two states of north-east India, namely Arunachal Pradesh and Assam in early 2020, we confirmed the first occurrence of African swine fever (ASF) in domestic pigs in India by real-time PCR, virus isolation and nucleotide sequencing. Genetic analyses in three independent genomic regions (B646L gene encoding the p72 protein, E183L gene encoding the p54 protein and the central variable region (CVR) of B602L gene) showed that the Indian ASF viruses are similar to the post-2007-p72-genotype II viruses reported from Asia and Europe, suggesting the transboundary expansion of ongoing ASF outbreaks in the region.

View Article and Find Full Text PDF

A retrospective investigation of pig tissue samples from different classical swine fever virus (CSFV) outbreaks was undertaken employing RT-PCR for possible coinfection with other swine viruses. Four samples from three different outbreaks were found to be coinfected with Japanese encephalitis virus (JEV). Phylogenetic analysis was done based on complete E gene sequenced from all four coinfected samples.

View Article and Find Full Text PDF

Improper or delayed pregnancy diagnosis has significant impact over animal production, particularly in buffaloes which inherently suffer from several reproductive inefficiencies. Thus the present study has undertaken to identify serum protein markers pertaining to early pregnancy diagnosis in buffaloes. Serum samples were collected from 10 pregnant Murrah Buffalo heifers at weekly intervals from days 0-35 post-artificial insemination and from 12 inseminated non-pregnant cyclic buffalo heifers on days 0, 7, 14 and 21.

View Article and Find Full Text PDF