The industrial application and environmental release of nickel oxide NPs (NiO NPs) is increasing, but the details of their relationship with plants are largely unknown. In this work, the cellular, tissue, organ, and molecular level responses of three ecotypes of Ni hyperaccumulator Odontarrhena lesbiaca grown in the presence of high doses of NiO NP (250 mg/L and 500 mg/L) were studied. All three ecotypes showed a similar accumulation of Ni in the presence of nano Ni, and in the case of NiO NPs, the root-to-shoot Ni translocation was slighter compared to the bulk Ni.
View Article and Find Full Text PDFIn addition to their beneficial effects on plant physiology, multi-walled carbon nanotubes (MWCNTs) are harmful to plants in elevated concentrations. This study compared the effects of two doses of MWCNT (10 and 80 mg/L) in Brassica napus and Solanum lycopersicum seedlings focusing on nitro-oxidative processes. The presence of MWCNTs was detectable in the root and hypocotyl of both species.
View Article and Find Full Text PDFSelenium (Se) hyperaccumulators are capable of uptake and tolerate high Se dosages. Excess Se-induced oxidative responses were compared in Astragalus bisulcatus and Astragalus cicer. Plants were grown on media supplemented with 0, 25 or 75 μM selenate for 14 days.
View Article and Find Full Text PDFNitric oxide (NO) is a versatile signal molecule that mediates environmental and hormonal signals orchestrating plant development. NO may act via reversible S-nitrosation of proteins during which an NO moiety is added to a cysteine thiol to form an S-nitrosothiol. In plants, several proteins implicated in hormonal signaling have been reported to undergo S-nitrosation.
View Article and Find Full Text PDFThe Ullmann reaction has been reported to be the first cross-coupling reaction performed by using a transition metal catalyst. This reaction has been initially considered as the copper-catalyzed homocoupling of aryl halides, leading to the formation of symmetrical biaryl compounds via the generation of novel C-C bonds. Although this reaction has been extensively studied in recent decades and valuable results have been achieved, there are still considerable efforts focused on the development of novel catalytic systems, mild reaction conditions, and extended substrate scope.
View Article and Find Full Text PDFLateral root primordia (LRPs) of Arabidopsis can be directly converted to shoot meristems (SMs) by the application of exogenous cytokinin. Here, we report that Arabidopsis POLYAMINE OXIDASE 5 (AtPAO5) contributes to this process, since the rate of SM formation from LRPs was significantly lower in the knockout mutant. Furthermore, the presented experiments showed that AtPAO5 influences SM formation via controlling the thermospermine (T-Spm) level.
View Article and Find Full Text PDFNitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.
View Article and Find Full Text PDFVital plant functions require at least six metals (copper, iron, molybdenum, manganese, zinc, and nickel), which function as enzyme cofactors or inducers. In recent decades, rapidly evolving nanotechnology has created nanoforms of essential metals and their compounds (e.g.
View Article and Find Full Text PDFSelenium (Se) enrichment of Bertoni can serve a dual purpose, on the one hand to increase plant biomass and stress tolerance and on the other hand to produce Se fortified plant-based food. Foliar Se spraying (0, 6, 8, 10 mg/L selenate, 14 days) of plantlets resulted in slightly decreased stevioside and rebaudioside A concentrations, and it also caused significant increment in stem elongation, leaf number, and Se content, suggesting that foliar Se supplementation can be used as a biofortifying approach. Furthermore, Se slightly limited photosynthetic CO assimilation (A, g, C/C), but exerted no significant effect on chlorophyll, carotenoid contents and on parameters associated with photosystem II (PSII) activity (F/F, F, Y(NO)), indicating that Se causes no photodamage in PSII.
View Article and Find Full Text PDFDue to recent active research, a large amount of data has been accumulated regarding the effects of different nanomaterials (mainly metal oxide nanoparticles, carbon nanotubes, chitosan nanoparticles) on different plant species. Most studies have focused on seed germination and early seedling development, presumably due to the simplicity of these experimental systems. Depending mostly on size and concentration, nanomaterials can exert both positive and negative effects on germination and seedling development during normal and stress conditions, thus some research has evaluated the phytotoxic effects of nanomaterials and the physiological and molecular processes behind them, while other works have highlighted the favorable seed priming effects.
View Article and Find Full Text PDFis an endemic species to the serpentine soils of Lesbos Island (Greece). As a nickel (Ni) hyperaccumulator, it possesses an exceptional Ni tolerance; and it can accumulate up to 0.2-2.
View Article and Find Full Text PDFCell wall-associated defence against zinc oxide nanoparticles (ZnO NPs) as well as nitro-oxidative signalling and its consequences in plants are poorly examined. Therefore, this study compares the effect of chemically synthetized ZnO NPs (~45 nm, 25 or 100 mg/L) on Brassica napus and Brassica juncea seedlings. The effects on root biomass and viability suggest that B.
View Article and Find Full Text PDFBoth nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model grown under stress-free conditions. Deficiency of SL synthesis or signaling ( and ) resulted in elevated NO and -nitrosothiol (SNO) levels due to decreased -nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO.
View Article and Find Full Text PDFMetal-polluted areas, especially where municipal sewage is used as fertilizer, often have high concentrations of more than one metal. The development of the root system is regulated by a complex signaling network, which includes reactive oxygen and nitrogen species. The delicate balance of the endogenous signal system can be affected by various environmental stimuli including heavy metals (HMs) in excess.
View Article and Find Full Text PDFSimilar to animals, it has recently been proven that nitro-fatty acids such as nitro-linolenic acid and nitro-oleic acid (NO-OA) have relevant physiological roles as signalling molecules also in plants. Although NO-OA is of great therapeutic importance, its presence in plants as a free fatty acid has not been observed so far. Since (oilseed rape) is a crop with high oleic acid content, the abundance of NO-OA in its tissues can be assumed.
View Article and Find Full Text PDFDue to their release into the environment, zinc oxide nanoparticles (ZnO NPs) may come in contact with plants. In elevated concentrations, ZnO NPs induce reactive oxygen species (ROS) production, but the metabolism of reactive nitrogen species (RNS) and the consequent nitro-oxidative signalling has not been examined so far. In this work, Brassica napus and Brassica juncea seedlings were treated with chemically synthetized ZnO NPs (∼8 nm, 0, 25 or 100 mg/L).
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2020
Despite of its essentiality, nickel (Ni) in excess is toxic for plants partly due to the overproduction of reactive oxygen species (ROS) and the consequent increase in oxidative stress signalling. However, in Ni-stressed plants little is known about the signal transduction of reactive nitrogen species (RNS) and protein tyrosine nitration as the protein-level consequence of increased RNS formation. Our experiments compared the nickel accumulation and tolerance, the redox signalling and the protein nitration in the agar-grown Arabidopsis thaliana and Brassica juncea exposed to Ni (50 μM nickel chloride).
View Article and Find Full Text PDFRoots have a noteworthy plasticity: due to different stress conditions their architecture can change to favour seedling vigour and yield stability. The development of the root system is regulated by a complex and diverse signalling network, which besides hormonal factors, includes reactive oxygen (ROS) - and nitrogen species (RNS). The delicate balance of the endogenous signal system can be affected by various environmental stimuli, such as the excess of essential heavy metals, like zinc (Zn).
View Article and Find Full Text PDFEcotoxicol Environ Saf
February 2018
Extremes of selenium (Se) exert toxic effects on plants' physiological processes; although plant species tolerate Se differently. This study focuses on the effect of Se (0, 20, 50 or 100μM sodium selenite) on secondary nitro-oxidative stress processes mainly using in situ microscopic methods in non-accumulator Arabidopsis thaliana and secondary Se accumulator Brassica juncea. Relative Se tolerance or sensitivity of the species was evaluated based on growth parameters (fresh and dry weight, root growth) and cell viability.
View Article and Find Full Text PDFSelenium phytotoxicity involves processes like reactive nitrogen species overproduction and nitrosative protein modifications. This study evaluates the toxicity of two selenium forms (selenite and selenate at 0µM, 20µM, 50µM and 100µM concentrations) and its correlation with protein tyrosine nitration in the organs of hydroponically grown Indian mustard (Brassica juncea L.).
View Article and Find Full Text PDFNitric oxide (NO) and related molecules (reactive nitrogen species) regulate diverse physiological processes mainly through posttranslational modifications such as protein tyrosine nitration (PTN). PTN is a covalent and specific modification of tyrosine (Tyr) residues resulting in altered protein structure and function. In the last decade, great efforts have been made to reveal candidate proteins, target Tyr residues and functional consequences of nitration in plants.
View Article and Find Full Text PDFElevated levels of selenium (Se) cause toxicity in non-accumulator plant species. The primary reasons for toxic Se effect have been considered to be selenoprotein accumulation and oxidative stress. However, based on our recent paper in Plant Cell Reports and previous literature data we suggest that disturbances in the homeostasis of both reactive oxygen and nitrogen species result in selenium-induced nitro-oxidative stress, contributing to toxicity.
View Article and Find Full Text PDFSelenite oppositely modifies cytokinin and nitric oxide metabolism in Arabidopsis organs. A mutually negative interplay between the molecules exists in selenite-exposed roots; and their overproduction causes selenite insensitivity. Selenium-induced phytotoxicity is accompanied by developmental alterations such as primary root (PR) shortening.
View Article and Find Full Text PDFZinc is an essential microelement, but its excess exerts toxic effects in plants. Heavy metal stress can alter the metabolism of reactive oxygen (ROS) and nitrogen species (RNS) leading to oxidative and nitrosative damages; although the participation of these processes in Zn toxicity and tolerance is not yet known. Therefore this study aimed to evaluate the zinc tolerance of Brassica organs and the putative correspondence of it with protein nitration as a relevant marker for nitrosative stress.
View Article and Find Full Text PDF