For the description of vibrational effects in electronic spectra, harmonic vibrations are a convenient and widespread model. However, spectra of larger organic molecules in solution usually exhibit signs of vibrational anharmonicity, as revealed by deviation from the mirror image symmetry between linear absorption and emission spectra of the harmonic case. For perylene and terylene, two molecules with rigid Pi-electron systems and strong vibrational-electronic coupling, we employ a simple but effective theoretical model, which introduces cubic anharmonicity in the potentials of electronic surfaces.
View Article and Find Full Text PDFIn π-conjugated chain molecules such as carotenoids, coupling between electronic and vibrational degrees of freedom is of central importance. It governs both dynamic and static properties, such as the time scales of excited state relaxation as well as absorption spectra. In this work, we treat vibronic dynamics in carotenoids on four electronic states (|S0⟩, |S1⟩, |S2⟩, and |Sn⟩) in a physically rigorous framework.
View Article and Find Full Text PDFEnergy relaxation between two electronic states of a molecule is mediated by a set of relevant vibrational states. We describe this fundamental process in a fully quantum mechanical framework based on first principles. This approach explains population transfer rates as well as describes the entire transient absorption signal as vibronic transitions between electronic states.
View Article and Find Full Text PDFWe show that weakly guiding nonlinear waveguides support stable propagation of rotating spatial solitons (azimuthons). We investigate the role of waveguide symmetry on the soliton rotation. We find that azimuthons in circular waveguides always rotate rigidly during propagation and the analytically predicted rotation frequency is in excellent agreement with numerical simulations.
View Article and Find Full Text PDF