Southeast Asian J Trop Med Public Health
March 2009
Though thrombocytopenia or dysfunction of platelets is common in dengue virus infection, the role of platelets has not been established. We enrolled 33 hospitalized children with serologically confirmed dengue virus infection. Blood specimens were collected during hospitalization.
View Article and Find Full Text PDFSoutheast Asian J Trop Med Public Health
March 2007
A new densovirus was isolated and characterized in laboratory strains of Toxorhynchites splendens. The virus was detected by polymerase chain reaction (PCR) from mosquitoes reared in our laboratory. PCR fragments from each mosquito were compared by single strand conformation polymorphism (SSCP) assay and found to be indistinguishable.
View Article and Find Full Text PDFBackground: Vascular leakage and shock are the major causes of death in patients with dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Thirty years ago, complement activation was proposed to be a key underlying event, but the cause of complement activation has remained unknown.
Methods: The major nonstructural dengue virus (DV) protein NS1 was tested for its capacity to activate human complement in its membrane-associated and soluble forms.
Dengue virus infection poses a growing public health and economic burden in a number of tropical and subtropical countries. Dengue circulates as a number of quasispecies, which can be divided by serology into four groups or serotypes. An interesting feature of Dengue, recognized over five decades ago, is that most severe cases that show hemorrhagic fever are not suffering from a primary infection.
View Article and Find Full Text PDFDuring the export of flavivirus particles through the secretory pathway, a viral envelope glycoprotein, prM, is cleaved by the proprotein convertase furin; this cleavage is required for the subsequent rearrangement of receptor-binding E glycoprotein and for virus infectivity. Similar to many furin substrates, prM in vector-borne flaviviruses contains basic residues at positions P1, P2, and P4 proximal to the cleavage site; in addition, a number of charged residues are found at position P3 and between positions P5 and P13 that are conserved for each flavivirus antigenic complex. The influence of additional charged residues on pr-M cleavage and virus replication was investigated by replacing the 13-amino-acid, cleavage-proximal region of a dengue virus (strain 16681) with those of tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and Japanese encephalitis virus (JEV) and by comparing the resultant chimeric viruses generated from RNA-transfected mosquito cells.
View Article and Find Full Text PDFThe sensitivity of dengue virus identification by mosquito inoculation and four reverse transcription-polymerase chain reaction (RT-PCR) procedures (Am. J. Trop.
View Article and Find Full Text PDF