This study assessed the sensitivity of the West African climate to varying vegetation fractions. The assessment of a such relationship is critical in understanding the interactions between land surface and atmosphere. Two sets of convection-permitting simulations from the UK Met Office Unified Model at 12 km horizontal resolution covering the monsoon period May-September (MJJAS) were used, one with fixed vegetation fraction (MF-V) and the other with time-varying vegetation fraction (MV-V).
View Article and Find Full Text PDFThree Coupled Model Intercomparison Project 5 (CMIP5) models that simulated the G4 experiment of the Geoengineering Model Intercomparison Project (GeoMIP) were used to investigate the impact of stratospheric aerosol injection (SAI) on combined temperature and precipitation extremes in Africa that can have greater negative impacts on human and the environment than individual rainfall or temperature extremes. The examined compound extremes included the dry (R and R) and wet (R and R) modes assessed during the injection (SAI, 2050-2069) and post-injection (postSAI, 2070-2089) periods compared with the historical period (1986-2005). We found a significant projected change in the occurrence of both wet and dry modes during SAI and postSAI related to the historical period.
View Article and Find Full Text PDFInvestigating the effects of the increased global warming through the lens of the Paris agreements would be of particular importance for Central African countries, which are already experiencing multiple socio-political and socio-economic constraints, but are also subject to severe natural hazards that interact to limit their adaptive capacity and thus increase their vulnerability to the adverse effects of climate change. This study explores changes in heat stress and the proportion of population at risk of discomfort over Central Africa, based on an ensemble-mean of high-resolution regional climate model simulations that cover a 30-year period, under 1.5, 2 and 3 °C Global Warming Levels (GWLs).
View Article and Find Full Text PDF