Publications by authors named "Aron N Horvath"

Analysing complex diseases such as chronic inflammatory joint diseases (CIJDs), where many factors influence the disease evolution over time, is a challenging task. CIJDs are rheumatic diseases that cause the immune system to attack healthy organs, mainly the joints. Different environmental, genetic and demographic factors affect disease development and progression.

View Article and Find Full Text PDF

Genetically distinct groups of Erysiphe necator, the fungus causing grapevine powdery mildew infect grapevine in Europe, yet the processes sustaining stable genetic differences between those groups are less understood. Genotyping of over 2000 field samples from six wine regions in Hungary collected between 2017 and 2019 was conducted to reveal E. necator genotypes and their possible differentiation.

View Article and Find Full Text PDF

Athletic performance relies on tendons, which enable movement by transferring forces from muscles to the skeleton. Yet, how load-bearing structures in tendons sense and adapt to physical demands is not understood. Here, by performing calcium (Ca) imaging in mechanically loaded tendon explants from rats and in primary tendon cells from rats and humans, we show that tenocytes detect mechanical forces through the mechanosensitive ion channel PIEZO1, which senses shear stresses induced by collagen-fibre sliding.

View Article and Find Full Text PDF

Among the stimuli to which cells are exposed in vivo, it has been shown that tensile deformations induce specific cellular responses in musculoskeletal, cardiovascular, and stromal tissues. However, the early response of cells to sustained substrate-based stretch has remained elusive because of the short timescale at which it occurs. To measure the tensile mechanical properties of adherent cells immediately after the application of substrate deformations, we have developed a dynamic traction force microscopy method that enables subsecond temporal resolution imaging of transient subcellular events.

View Article and Find Full Text PDF

Understanding cell-material interactions requires accurate characterization of the substrate mechanics, which are generally measured by indentation-type atomic force microscopy. To facilitate cell-substrate interaction, model extracellular matrix coatings are used although their tensile mechanical properties are generally unknown. In this study, beyond standard compressive stiffness estimation, we performed a novel tensile mechanical characterization of collagen- and fibronectin-micropatterned polyacrylamide hydrogels.

View Article and Find Full Text PDF

Powdery mildews, ubiquitous obligate biotrophic plant pathogens, are often attacked in the field by mycoparasitic fungi belonging to the genus . Some strains are commercialized biocontrol agents of crop pathogenic powdery mildews. Using -mediated transformation (ATMT), we produced stable transformants that constitutively expressed green fluorescent protein (GFP) to (i) improve the visualization of the mildew- interaction and (ii) decipher the environmental fate of fungi before and after acting as a mycoparasite.

View Article and Find Full Text PDF

In planta detection of mutualistic, endophytic, and pathogenic fungi commonly colonizing roots and other plant organs is not a routine task. We aimed to use fluorescence in situ hybridization (FISH) for simultaneous specific detection of different fungi colonizing the same tissue. We have adapted ribosomal RNA (rRNA) FISH for visualization of common mycorrhizal (arbuscular- and ectomycorrhiza) and endophytic fungi within roots of different plant species.

View Article and Find Full Text PDF