Background: The reactivity of blood with non-endothelial surface is a challenge for long-term Ventricular Assist Devices development, usually made with pure titanium, which despite of being inert, low density and high mechanical resistance it does not avoid the thrombogenic responses. Here we tested a modification on the titanium surface with Laser Induced Periodic Surface Structures followed by Diamond Like Carbon (DLC) coating in different thicknesses to customize the wettability profile by changing the surface energy of the titanium.
Methods: Four different surfaces were proposed: (1) Pure Titanium as Reference Material (RM), (2) Textured as Test Sample (TS), (3) Textured with DLC 0.
Introduction: The use of volatile agents during cardiopulmonary bypass allows a "single drug anesthesia" and is associated with reduced peak postoperative troponin levels. Connecting the exhaust systems to the oxygenator's gas outlet port is mandatory and allows to prevent operating room (but not atmospheric) pollution by volatile agents. The aim of this study was to create a prototype filter for volatile agents and to test its adsorption efficacy during an ex-vivo simulated conventional cardiopulmonary bypass test.
View Article and Find Full Text PDFArtif Organs
August 2020
This study presents an assessment for long-term use of the apical aortic blood pump (AABP), focusing on wear reduction in the bearing system. AABP is a centrifugal left ventricle assist device initially developed for bridge to transplant application. To analyze AABP performance in long-term applications, a durability test was performed.
View Article and Find Full Text PDFCongestive heart failure is a pathology of global incidence that affects millions of people worldwide. When the heart weakens and fails to pump blood at physiological rates commensurate with the requirements of tissues, two main alternatives are cardiac transplant and ventricular assist devices (VADs). This article presents the design strategy for development of a customized VAD electromagnetic actuator.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
July 2019
Fibrous scaffolds have become popular in tissue engineering (TE) due to their morphological resemblance to extracellular matrix components. While electrospinning is the most common technique in the field, solution blow spinning is an emerging technique with great potential. One of its many advantages is that it can produce aligned fibers with a very simple experimental setup.
View Article and Find Full Text PDFObjective: The objective of this paper is to present the results from Spiral Pump clinical trial after design modifications performed at its previous project. This pump applies axial end centrifugal hydraulic effects for blood pumping during cardiopulmonary bypass for patients under cardiac surgery.
Methods: This study was performed in 52 patients (51% males), between 20 to 80 (67±14.
Artif Organs
November 2013
The Apico Aortic Blood Pump (AABP) is a centrifugal continuous flow left ventricular assist device (LVAD) with ceramic bearings. The device is in the initial development phase and is being designed to be attached directly to the left ventricular apex by introducing an inlet cannula. This paper reports results from in vitro experiments.
View Article and Find Full Text PDFFractures in stents are usually detected by visual analysis, which may be affected by the presence of noise and image deformations. The lack of research into automating stent fracture detection has motivated this work, in which techniques are developed to facilitate diagnosis by observation (Image Delineation Algorithm) and, when possible, to point out areas of possible fractures (Fracture Detection Algorithm). The use of classical elements and the development of additional computational techniques contributed to the process of image analysis, providing a possible way to aid medical diagnosis.
View Article and Find Full Text PDFIn previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets.
View Article and Find Full Text PDFThis work presents the initial studies and the proposal for a cardiovascular system electro-fluid-dynamic simulator to be applied in the development of left ventricular assist devices (LVADs). The simulator, which is being developed at University Sao Judas Tadeu and at Institute Dante Pazzanese of Cardiology, is composed of three modules: (i) an electrical analog model of the cardiovascular system operating in the PSpice electrical simulator environment; (ii) an electronic controller, based on laboratory virtual instrumentation engineering workbench (LabVIEW) acquisition and control tool, which will act over the physical simulator; and (iii) the physical simulator: a fluid-dynamic equipment composed of pneumatic actuators and compliance tubes for the simulation of active cardiac chambers and big vessels. The physical simulator (iii) is based on results obtained from the electrical analog model (i) and physiological parameters.
View Article and Find Full Text PDFThis work presents results of preliminary studies concerning application of magnetic bearing in a ventricular assist device (VAD) being developed by Dante Pazzanese Institute of Cardiology-IDPC (São Paulo, Brazil). The VAD-IDPC has a novel architecture that distinguishes from other known VADs. In this, the rotor has a conical geometry with spiral impellers, showing characteristics that are intermediate between a centrifugal VAD and an axial VAD.
View Article and Find Full Text PDFIntroduction: This paper addresses an original project that encompasses the conception, development and clinical application of a helical bypass pump called the Spiral Pump, that uses the association of centrifugal and axial propulsion forces based de the Archimedes principle. This project has obtained a Brazilian Patent and an International Preliminary Report, defining it as an invention.
Methods: The aim of this work was to evaluate the hemodynamic capacity and the impact of its application on blood cells by means of experimental in vitro tests, including hydrodynamic efficiency, effect on hemolysis and flow visualization.