Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress.
View Article and Find Full Text PDFComputer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development.
View Article and Find Full Text PDFBackground: CRISPR-Cas-Docker is a web server for in silico docking experiments with CRISPR RNAs (crRNAs) and Cas proteins. This web server aims at providing experimentalists with the optimal crRNA-Cas pair predicted computationally when prokaryotic genomes have multiple CRISPR arrays and Cas systems, as frequently observed in metagenomic data.
Results: CRISPR-Cas-Docker provides two methods to predict the optimal Cas protein given a particular crRNA sequence: a structure-based method (in silico docking) and a sequence-based method (machine learning classification).
RNA-protein interactions are crucial for diverse biological processes. In prokaryotes, RNA-protein interactions enable adaptive immunity through CRISPR-Cas systems. These defence systems utilize CRISPR RNA (crRNA) templates acquired from past infections to destroy foreign genetic elements through crRNA-mediated nuclease activities of Cas proteins.
View Article and Find Full Text PDFEnvironmental monitoring of microplastics (MP) contamination has become an area of great research interest, given potential hazards associated with human ingestion of MP. In this context, determination of MP concentration is essential. However, cheap, rapid, and accurate quantification of MP remains a challenge to this date.
View Article and Find Full Text PDFProtein therapeutics play an important role in controlling the functions and activities of disease-causing proteins in modern medicine. Despite protein therapeutics having several advantages over traditional small-molecule therapeutics, further development has been hindered by drug complexity and delivery issues. However, recent progress in deep learning-based protein structure prediction approaches, such as AlphaFold2, opens new opportunities to exploit the complexity of these macro-biomolecules for highly specialised design to inhibit, regulate or even manipulate specific disease-causing proteins.
View Article and Find Full Text PDF