Publications by authors named "Arnon Amir"

Article Synopsis
  • NorthPole is a new neural inference architecture that integrates memory and compute on the same chip, moving away from the traditional processor-centric design of computing.
  • It is designed to be low-precision, massively parallel, and energy-efficient, offering a high-utilization programming model.
  • In benchmarks like ResNet50 and Yolo-v4, NorthPole significantly outperforms existing architectures, achieving notable improvements in energy efficiency, space efficiency, and reduced latency compared to similar technology processes.
View Article and Find Full Text PDF

Millions of wild animals are killed annually on roads worldwide. During spring 2020, the volume of road traffic was reduced globally as a consequence of the COVID-19 pandemic. We gathered data on wildlife-vehicle collisions (WVC) from Czechia, Estonia, Finland, Hungary, Israel, Norway, Slovenia, Spain, Sweden, and for Scotland and England within the United Kingdom.

View Article and Find Full Text PDF

Deep networks are now able to achieve human-level performance on a broad spectrum of recognition tasks. Independently, neuromorphic computing has now demonstrated unprecedented energy-efficiency through a new chip architecture based on spiking neurons, low precision synapses, and a scalable communication network. Here, we demonstrate that neuromorphic computing, despite its novel architectural primitives, can implement deep convolution networks that (i) approach state-of-the-art classification accuracy across eight standard datasets encompassing vision and speech, (ii) perform inference while preserving the hardware's underlying energy-efficiency and high throughput, running on the aforementioned datasets at between 1,200 and 2,600 frames/s and using between 25 and 275 mW (effectively >6,000 frames/s per Watt), and (iii) can be specified and trained using backpropagation with the same ease-of-use as contemporary deep learning.

View Article and Find Full Text PDF

Inspired by the brain's structure, we have developed an efficient, scalable, and flexible non-von Neumann architecture that leverages contemporary silicon technology. To demonstrate, we built a 5.4-billion-transistor chip with 4096 neurosynaptic cores interconnected via an intrachip network that integrates 1 million programmable spiking neurons and 256 million configurable synapses.

View Article and Find Full Text PDF

We describe a robust and efficient method for automatically matching and time-aligning electronic slides to videos of corresponding presentations. Matching electronic slides to videos provides new methods for indexing, searching, and browsing videos in distance-learning applications. However, robust automatic matching is challenging due to varied frame composition, slide distortion, camera movement, low-quality video capture, and arbitrary slides sequence.

View Article and Find Full Text PDF

Modern Electronic Medical Record (EMR) systems often integrate large amounts of data from multiple disparate sources. To do so, EMR systems must align the data to create consistency between these sources. The data should also be presented in a manner that allows a clinician to quickly understand the complete condition and history of a patient's health.

View Article and Find Full Text PDF