Isotopic analyses of the incrementally growing baleen in Mysticeti have been used to learn about their feeding and movement patterns. Using methods previously applied to Pacific minke whales, stable δN and δC isotope values were measured along the baleen plates of male and female minke whales from two locations in the Northeast Atlantic. The sample sizes used in this study are comparable to those previously used in the literature, and, although limited in size, the evidence suggests differences in isotopic signatures between whales caught at different locations.
View Article and Find Full Text PDFSouthern Ocean ecosystems are under pressure from resource exploitation and climate change. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels.
View Article and Find Full Text PDFIt is suggested that an orienting response to loud sound causes apnea, which, in already asphyxic infants, triggers a maximal secondary chemoreceptor response, with massive vagal stimulation of the heart, which causes heart arrest.
View Article and Find Full Text PDFThis Review focuses on the original papers that have made a difference to our thinking and were first in describing an adaptation to diving, and less on those that later repeated the findings with better equipment. It describes some important anatomical peculiarities of phocid seals, as well as their many physiological responses to diving. In so doing, it is argued that the persistent discussions on the relevance and differences between responses seen in forced dives in the laboratory and those during free diving in the wild are futile.
View Article and Find Full Text PDFAt temperate latitudes, the annual cycle of day length synchronizes circannual rhythms, and, in mammals, this is mediated via nocturnal production of the pineal hormone melatonin, proportional to the length of the night. Here, we studied circannual synchronization in an arctic species, the reindeer (), which ceases to produce a rhythmic melatonin signal when it is exposed to extended periods of continuous midwinter darkness and continuous midsummer light. Using food intake, antler growth and moult as endpoints, we demonstrate that when animals living at 70°N are transferred from natural photoperiods in late autumn to either continuous light or continuous darkness, they undergo a conspicuous acceleration of the circannual programme.
View Article and Find Full Text PDFFahlman and associates (2016) have emphasized the importance of proper physiological insight when modelling energy expenditure in large cetaceans. Here we argue that they have themselves failed in this endeavour.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
July 2016
The pressure-volume relationship in the ascending aorta ("windkessel") of the hooded seal was determined and the morphology of its vasa vasorum described in some detail. We found that the ascending aorta has a high compliance and can easily accommodate the entire stroke volume when the peripheral vascular resistance becomes much increased and maintain perfusion pressure during the much extended diastole and thereby reduce cardiac stroke work during diving. We also found that the 3- to 5-mm thick wall of the ascending aorta had a very elaborate vasa vasorum interna with a hitherto undescribed vascular structure that penetrates the entire vascular wall.
View Article and Find Full Text PDFThis Review presents a broad overview of adaptations of truly Arctic and Antarctic mammals and birds to the challenges of polar life. The polar environment may be characterized by grisly cold, scarcity of food and darkness in winter, and lush conditions and continuous light in summer. Resident animals cope with these changes by behavioural, physical and physiological means.
View Article and Find Full Text PDFWhales are unique in that the supply of blood to the brain is not by the internal carotid arteries, but by way of thoracic and intra-vertebral arterial retia. We found in the harbor porpoise (Phocoena phocoena) that these retia split up into smaller anastomosing vessels and thin-walled sinusoid structures that are embedded in fat. The solubility of nitrogen is at least six times larger in fat than in water, and we suggest that nitrogen in supersaturated blood will be absorbed in the fat, by diffusion, during the very slow passage of the blood through the arterial retia.
View Article and Find Full Text PDFHooded seals (Cystophora cristata) rely on large stores of oxygen, either bound to hemoglobin or myoglobin (Mb), to support prolonged diving activity. Pups are born with fully developed hemoglobin stores, but their Mb levels are only 25-30% of adult levels. We measured changes in muscle [Mb] from birth to 1 year of age in two groups of captive hooded seal pups, one being maintained in a seawater pool and one on land during the first 2 months.
View Article and Find Full Text PDFA total of four barren adult female muskoxen (Ovibos moschatus) were used over a period of 2 years for the purpose of the present study. During the first year, the natural changes in appetite (ad libitum intake of standard pelleted reindeer feed) and body mass were determined in two of the animals. During the second year, the effect of reduced food quality on ad libitum food intake was tested in all four animals in July when the appetite had been found to be at a high.
View Article and Find Full Text PDFReindeer (Rangifer tarandus) are protected against the Arctic winter cold by thick fur of prime insulating capacity and hence have few avenues of heat loss during work. We have investigated how these animals regulate brain temperature under heavy heat loads. Animals were instrumented for measurements of blood flow, tissue temperatures and respiratory frequency (f) under full anaesthesia, whereas measurements were also made in fully conscious animals while in a climatic chamber or running on a treadmill.
View Article and Find Full Text PDFThe structural features of the venous system of seals, including such specialties as a caval sphincter, a huge posterior caval vein and hepatic sinuses, venous plexuses and a huge extradural intravertebral vein, are described and functional aspects of these features in relation to diving habits are discussed. A number of old concepts are discarded and new ones are proposed, particularly with regard to the significance of the extradural intravertebral vein, which, contrary to common current belief, probably is of little importance during diving.
View Article and Find Full Text PDFOne hundred and thirty three "wild" muskoxen, 81 of which of known body mass, were successfully immobilized using etorphine (M99), and xylazine (Rompun®), delivered by use of a dart gun. A dose of 0.05 mg/kg M99, supplemented by 0.
View Article and Find Full Text PDFBrain (T(brain)), intra-aorta (T(aorta)), latissimus dorsi muscle (T(m)) and rectal temperature (T(r)) were measured in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals during experimental dives in 4 degrees C water. The median brain cooling was about 1 degrees C during 15 min diving, but in some cases it was as much as 2.5 degrees C.
View Article and Find Full Text PDFReindeer (Rangifer tarandus) eat and utilize lichens as an important source of energy and nutrients in winter. Lichens synthesize and accumulate a wide variety of phenolic secondary compounds, such as usnic acid, as a defense against herbivores and to protect against damage by UV-light in solar radiation. We have examined where and to what extent these phenolic compounds are degraded in the digestive tract of the reindeer, with particular focus on usnic acid.
View Article and Find Full Text PDFSeals cope with regular exposure to diving hypoxia by storing oxygen in blood and skeletal muscles and by limiting the distribution of blood-borne oxygen to all but the most hypoxia vulnerable tissues (brain, heart), through dramatic cardiovascular adjustments. Still, arterial oxygen tension of freely diving seals regularly drops to levels that would be fatal to most non-diving mammals. Some cerebral protection is offered through diving-induced brain cooling and, possibly, enhanced oxygen delivery due to a particularly high brain capillary density.
View Article and Find Full Text PDFAnnu Rev Physiol
April 2007
All mammals and birds must develop effective strategies to cope with reduced oxygen availability. These animals achieve tolerance to acute and chronic hypoxia by (a) reductions in metabolism, (b) the prevention of cellular injury, and (c) the maintenance of functional integrity. Failure to meet any one of these tasks is detrimental.
View Article and Find Full Text PDFThe light/dark cycle of day and night synchronizes an internal 'biological clock' that governs daily rhythms in behaviour, but this form of regulation is denied to polar animals for most of the year. Here we demonstrate that the continuous lighting conditions of summer and of winter at high latitudes cause a loss in daily rhythmic activity in reindeer living far above the Arctic Circle. This seasonal absence of circadian rhythmicity may be a ubiquitous trait among resident polar vertebrates.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
August 2005
The mammalian response to hypothermia is increased metabolic heat production, usually by way of muscular activity, such as shivering. Seals, however, have been reported to respond to diving with hypothermia, which in other mammals under other circumstances would have elicited vigorous shivering. In the diving situation, shivering could be counterproductive, because it obviously would increase oxygen consumption and therefore reduce diving capacity.
View Article and Find Full Text PDF