Metastasis remains a major clinical problem in breast cancer. One family of genes previously linked with metastasis is the metastasis tumor-associated (MTA) family, with members MTA1 enhancing and MTA3 inhibiting cancer metastasis. We have previously found that MTA2 enhances anchorage-independent growth in estrogen receptor α (ERα) breast cancers, and, in combination with other genes, performed as a predictive biomarker in ERα-positive breast cancer.
View Article and Find Full Text PDFEstrogen receptor alpha (ERalpha) is highly regulated through multiple mechanisms including cell signaling, posttranslational modifications, and protein-protein interactions. We have previously identified a K303R ERalpha mutation within the hinge region of ERalpha. This mutation results in an altered posttranslational regulation and increased in vitro growth in the presence of low estrogen concentrations.
View Article and Find Full Text PDFAromatase inhibitors (AI) are rapidly becoming the first choice for hormonal treatment of estrogen receptor-alpha (ERalpha)-positive breast cancer in postmenopausal women. However, de novo and acquired resistance frequently occurs. We have previously identified a lysine to arginine transition at residue 303 (K303R) in ERalpha in premalignant breast lesions and invasive breast cancers, which confers estrogen hypersensitivity and resistance to tamoxifen treatment.
View Article and Find Full Text PDF