Publications by authors named "Arnold Skimminge"

The human sense of smell is closely associated with morphological differences of the fronto-limbic system, specifically the piriform cortex and medial orbitofrontal cortex (mOFC). Still it is unclear whether cortical volume in the core olfactory areas and connected brain regions are shaped differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI) matched with sixteen normosmic controls.

View Article and Find Full Text PDF

The brain's serotonergic system plays a crucial role in the processing of emotional stimuli, and several studies have shown that a reduced serotonergic neurotransmission is associated with an increase in amygdala activity during emotional face processing. Prolonged recreational use of ecstasy (3,4-methylene-dioxymethamphetamine [MDMA]) induces alterations in serotonergic neurotransmission that are comparable to those observed in a depleted state. In this functional magnetic resonance imaging (fMRI) study, we investigated the responsiveness of the amygdala to emotional face stimuli in recreational ecstasy users as a model of long-term serotonin depletion.

View Article and Find Full Text PDF

Most humans show a strong preference to use their right hand, but strong preference for the right hand does not necessarily imply a strong right-left asymmetry in manual proficiency (i.e., dexterity).

View Article and Find Full Text PDF

Background: Persistent cognitive dysfunction in depression and bipolar disorder (BD) impedes patients' functional recovery. Erythropoietin (EPO) increases neuroplasticity and reduces cognitive difficulties in treatment-resistant depression (TRD) and remitted BD. This magnetic resonance imaging study assessed the neuroanatomical basis for these effects.

View Article and Find Full Text PDF

Human aging is accompanied by both vascular and cognitive changes. Although arteries throughout the body are known to become stiffer with age, this vessel hardening is believed to start at the level of the aorta and progress to other organs, including the brain. Progression of this vascular impairment may contribute to cognitive changes that arise with a similar time course during aging.

View Article and Find Full Text PDF

Objective: To evaluate the prognostic value of the cortical N-acetyl aspartate to creatine ratio (NAA/Cr) in early relapsing-remitting multiple sclerosis (RRMS).

Methods: Sixteen patients with newly diagnosed RRMS were studied by serial MRI and MR spectroscopic imaging (MRSI) once every 6 months for 24 months. Clinical examinations, including the expanded disability status scale (EDSS), were performed at baseline, month 24, and at year 7.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before and after the intravenous injection of a paramagnetic contrast agent to assess BBB permeability in the normal appearing white matter (NAWM) in patients with relapsing-remitting MS (RR-MS).

View Article and Find Full Text PDF

Unlabelled: Elevated plasma N-terminal (NT)-proBNP from the heart as well as white matter hyperintensities (WMH) in the brain predict cardiovascular (CV) mortality in the general population. The cause of poor prognosis associated with elevated P-NT-proBNP is not known but WMH precede strokes in high risk populations. We assessed the association between P-NT-proBNP and WMH or brain atrophy measured with magnetic resonance imaging (MRI) in type 2 diabetic patients, and age-matched controls.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) impairs signal transmission along cortico-cortical and cortico-subcortical connections, affecting functional integration within the motor network. Functional magnetic resonance imaging (fMRI) during motor tasks has revealed altered functional connectivity in MS, but it is unclear how much motor disability contributed to these abnormal functional interaction patterns.

Objective: To avoid any influence of impaired task performance, we examined disease-related changes in functional motor connectivity in MS at rest.

View Article and Find Full Text PDF

Sustained attention develops during childhood and has been linked to the right fronto-parietal cortices in functional imaging studies; however, less is known about its relation to white matter (WM) characteristics. Here we investigated whether the microstructure of the WM underlying and connecting the right fronto-parietal cortices was associated with sustained attention performance in a group of 76 typically developing children aged 7-13 years. Sustained attention was assessed using a rapid visual information processing paradigm.

View Article and Find Full Text PDF

Background: Prepulse inhibition (PPI) of the startle reflex is modulated by a complex neural network. Prepulse inhibition impairments are found at all stages of schizophrenia. Previous magnetic resonance imaging (MRI) studies suggest that brain correlates of PPI differ between patients with schizophrenia and healthy controls; however, these studies included only patients with chronic illness and medicated patients.

View Article and Find Full Text PDF

Cross-sectional studies have suggested that corpus callosum (CC) atrophy is related to impairment in global cognitive function, mental speed, and executive functions in the elderly. Longitudinal studies confirming these findings have been lacking. We investigated whether CC tissue loss is associated with change in cognitive performance over time in subjects with age-related white matter lesions (WML).

View Article and Find Full Text PDF

Objective: To examine the impact of corpus callosum (CC) tissue loss on the development of global cognitive and motor impairment in the elderly.

Methods: This study was based on the Leukoaraiosis and Disability (LADIS) study. Assessment of cognitive and motor functions and magnetic resonance imaging (MRI) were done at baseline and at a 3-year follow-up in nondemented elderly subjects.

View Article and Find Full Text PDF

Recent research on aging has established important links between the neurobiology of normal aging and age-related decline in episodic memory, yet the exact nature of this relationship is still unknown. Functional neuroimaging of regions such as the medial temporal lobe (MTL) have produced conflicting findings. Using functional magnetic resonance imaging (fMRI), we have recently shown that young healthy individuals show a stronger activation of the MTL during encoding of objects as compared with encoding of positions.

View Article and Find Full Text PDF

The corticospinal tracts and the basal ganglia continue to develop during childhood and adolescence, and indices of their maturation can be obtained using diffusion-weighted imaging. Here we show that a simple measure of visuomotor function is correlated with diffusion parameters in the corticospinal tracts and neostriatum. In a cohort of 75 typically-developing children aged 7 to 13years, mean 5-choice reaction times (RTs) were assessed.

View Article and Find Full Text PDF

Background/objectives: Several studies have found atrophy of the corpus callosum (CC) in patients with Alzheimer's disease (AD). However, it remains unclear whether callosal atrophy is already present in the early stages of AD, and to what extent it may be associated with other structural changes in the brain, such as age-related white matter changes (ARWMC) and progression of the disease.

Methods: Twenty-eight patients in the early stages of AD and 50 non-demented elderly subjects with varying degrees of ARWMC were investigated using MRI.

View Article and Find Full Text PDF

During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly throughout the childhood years, and several lines of evidence implicate the left fronto-parietal cortices and connecting fiber tracts in SWM processing.

View Article and Find Full Text PDF

First-generation antipsychotics have been associated with striatal volume increases. The effects of second-generation antipsychotics (SGAs) on the striatum are unclear. Moreover, SGAs may have neuroprotective effects on the hippocampus.

View Article and Find Full Text PDF

Background: Enlarged ventricles and reduced hippocampal volume are consistently found in patients with first-episode schizophrenia. Studies investigating brain structure in antipsychotic-naive patients have generally focused on the striatum. In this study, we examined whether ventricular enlargement and hippocampal and caudate volume reductions are morphological traits of antipsychotic-naive first-episode schizophrenia.

View Article and Find Full Text PDF

Cognitive control of thoughts, actions and emotions is important for normal behaviour and the development of such control continues throughout childhood and adolescence. Several lines of evidence suggest that response inhibition is primarily mediated by a right-lateralized network involving inferior frontal gyrus (IFG), presupplementary motor cortex (preSMA), and subthalamic nucleus. Though the brain's fibre tracts are known to develop during childhood, little is known about how fibre tract development within this network relates to developing behavioural control.

View Article and Find Full Text PDF

The medial temporal lobe (MTL) consists of several regions thought to be involved in learning and memory. However, the degree of functional specialization among these regions remains unclear. Previous studies have demonstrated effects of both content and processing stage, but findings have been inconsistent.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) results in neurodegenerative changes that progress for months, perhaps even years post-injury. However, there is little information on the spatial distribution and the clinical significance of this late atrophy. In 24 patients who had sustained severe TBI we acquired 3D T1-weighted MRIs about 8 weeks and 12 months post-injury.

View Article and Find Full Text PDF

Optic neuritis (ON) is the first clinical manifestation in approximately 20% of patients with multiple sclerosis (MS). The inflammation and demyelination of the optic nerve are characterized by symptomatic visual impairment and retrobulbar pain, and associated with decreased visual acuity, decreased colour and contrast sensitivity, delayed visual evoked potentials and visual field defects. Spontaneous recovery of vision typically occurs within weeks or months after onset, depending on the resolution of inflammation, remyelination, restoration of conduction in axons which persist demyelinated and neuronal plasticity in the cortical and subcortical visual pathways.

View Article and Find Full Text PDF