Publications by authors named "Arnold M Raitsimring"

Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity.

View Article and Find Full Text PDF

Molybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme.

View Article and Find Full Text PDF

Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor.

View Article and Find Full Text PDF

The catalytic mechanisms of sulfite oxidizing enzymes (SOEs) have been investigated by multi-frequency pulsed EPR measurements of "difficult" magnetic nuclei (35.37Cl, 33S, 17O) associated with the Mo(v) center. Extensive DFT calculations have been used to relate the experimental magnetic resonance parameters of these nuclei to specific active site structures.

View Article and Find Full Text PDF

Continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopy have been used to characterize two variants of bacterial sulfite dehydrogenase (SDH) from Starkeya novella in which the conserved active-site arginine residue (R55) is replaced by a neutral amino acid residue. Substitution by the hydrophobic methionine residue (SDH(R55M)) has essentially no effect on the pH dependence of the EPR properties of the Mo(V) center, even though the X-ray structure of this variant shows that the methionine residue is rotated away from the Mo center and a sulfate anion is present in the active-site pocket (Bailey et al. in J Biol Chem 284:2053-2063, 2009).

View Article and Find Full Text PDF

Pulse double electron-electron spin resonance (DEER) measurements were applied to characterize the distribution and average number of guest-molecules (in the form of spin-probes) in Pluronic P123 micelles. Two types of spin-probes were used, one of which is a spin-labeled P123 (P123-NO), which is similar to the micelles constituent molecules, and the other is spin-labeled Brij56 (Brij56-NO) which is significantly different. Qualitative information regarding the relative location of the spin-labels within the micelles was obtained from the isotropic hyperfine coupling and the correlation times, determined from continuous wave EPR measurements.

View Article and Find Full Text PDF

SOEs (sulfite-oxidizing enzymes) are physiologically vital and occur in all forms of life. During the catalytic cycle, the five-co-ordinate square pyramidal oxo-molybdenum active site passes through the Mo(V) state, and intimate details of the structure can be obtained from variable frequency pulsed EPR spectroscopy through the hyperfine and nuclear quadrupole interactions of nearby magnetic nuclei. By employing variable spectrometer operational frequencies, it is possible to optimize the measurement conditions for difficult quadrupolar nuclei of interest (e.

View Article and Find Full Text PDF

The set-up of a new microwave bridge for a 95 GHz pulse EPR spectrometer is described. The virtues of the bridge are its simple and flexible design and its relatively high output power (0.7 W) that generates pi pulses of 25 ns and a microwave field, B(1)=0.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) investigation of the Mo(V) center of the pathogenic R160Q mutant of human sulfite oxidase (hSO) confirms the presence of three distinct species whose relative abundances depend upon pH. Species 1 is exclusively present at pH < or = 6, and remains in significant amounts even at pH 8. Variable-frequency electron spin echo envelope modulation (ESEEM) studies of this species prepared with (33)S-labeled sulfite clearly show the presence of coordinated sulfate, as has previously been found for the "blocked" form of Arabidopsis thaliana at low pH (Astashkin, A.

View Article and Find Full Text PDF

The Mo(V) forms of the Tyr343Phe (Y343F) mutant of human sulfite oxidase (SO) have been investigated by continuous wave (CW) and variable frequency pulsed EPR spectroscopies as a function of pH. The CW EPR spectrum recorded at low pH (∼6.9) has g-values similar to those known for the low-pH form of the native vertebrate SO (original lpH form); however, unlike the spectrum of original lpH SO, it does not show any hyperfine splittings from a nearby exchangeable proton.

View Article and Find Full Text PDF

Sulfite oxidase from Arabidopsis thaliana has been reduced at pH = 6 with sulfite labeled with 33S (nuclear spin I = 3/2), followed by reoxidation by ferricyanide to generate the Mo(V) state of the active center. To obtain information about the hyperfine interaction (hfi) of 33S with Mo(V), continuous-wave electron paramagnetic resonance (EPR) and electron spin echo envelope modulation (ESEEM) experiments have been performed. The interpretation of the EPR and ESEEM spectra was facilitated by a theoretical analysis of the nuclear transition frequencies expected for the situation of the nuclear quadrupole interaction being much stronger than the Zeeman and hyperfine interactions.

View Article and Find Full Text PDF

Sulfite oxidizing enzymes (SOEs) are physiologically vital and occur in all forms of life. During the catalytic cycle the five-coordinate square-pyramidal oxo-molybdenum active site passes through the Mo(v) state, and intimate details of the structure can be obtained from pulsed EPR spectroscopy through the hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of nearby magnetic nuclei (e.g.

View Article and Find Full Text PDF

Double electron electron resonance (DEER) is an experimental technique used to determine distance between electron spins. In this work, we show that it can be used to study the properties of micelles in solution, specifically their volume and the aggregation number. The feasibility of the method is tested on micelles of Pluronic block copolymers, PEO(x)-PPO(y)-PEO(x), built from chains of poly(ethylene oxide) (PEO), comprising the more hydrophilic corona, and a poly(propylene oxide) (PPO) block constituting the hydrophobic core.

View Article and Find Full Text PDF

Pulsed 17O Mims electron-nuclear double resonance (ENDOR) spectroscopy at the W band (95 GHz) and D band (130 GHz) is used for the direct determination of the water coordination number (q) of gadolinium-based magnetic resonance imaging (MRI) contrast agents. Spectra of metal complexes in frozen aqueous solutions at approximately physiological concentrations can be obtained either in the presence or absence of protein targets. This method is an improvement over the 1H ENDOR method described previously, which involved the difference ENDOR spectrum of exchangeable protons from spectra taken in H2O and D2O.

View Article and Find Full Text PDF

Ka band ESEEM spectroscopy was used to determine the hyperfine (hfi) and nuclear quadrupole (nqi) interaction parameters for the oxo-17O ligand in [Mo 17O(SPh)4]-, a spectroscopic model of the oxo-Mo(V) centers of enzymes. The isotropic hfi constant of 6.5 MHz found for the oxo-17O is much smaller than the values of approximately 20-40 MHz typical for the 17O nucleus of an equatorial OH(2) ligand in molybdenum enzymes.

View Article and Find Full Text PDF

A novel methodology based on electron-nuclear double resonance (ENDOR) spectroscopy is used for the direct determination of the water coordination number (q) of gadolinium-based magnetic resonance imaging (MRI) contrast agents. Proton ENDOR spectra can be obtained at approximately physiological concentrations for metal complexes in frozen aqueous solutions either in the presence or absence of protein targets. It is shown that, depending on the structure of the co-ligand, the water hydration number of a complex in aqueous solution can be significantly different to when the complex is noncovalently bound to a protein.

View Article and Find Full Text PDF

Variable-frequency pulsed electron paramagnetic resonance studies of the molybdenum(V) center of sulfite dehydrogenase (SDH) clearly show couplings from nearby exchangeable protons that are assigned to a Mo(V)OH(n) group. The hyperfine parameters for these exchangeable protons of SDH are the same at both low and high pH and similar to those for the high-pH forms of sulfite oxidases (SOs) from eukaryotes. The SDH proton parameters are distinctly different from the low-pH forms of chicken and human SO.

View Article and Find Full Text PDF

The Mo(V) center of plant sulfite oxidase from Arabidopsis thaliana (At-SO) has been studied by continuous wave and pulsed EPR methods. Three different Mo(V) EPR signals have been observed, depending on pH and the technique used to generate the Mo(V) oxidation state. At pH 6, reduction by sulfite followed by partial reoxidation with ferricyanide generates an EPR spectrum with g-values similar to the low-pH (lpH) form of vertebrate SOs, but no nearby exchangeable protons can be detected.

View Article and Find Full Text PDF

The synthesis of a novel ligand, based on N-methyl-diethylenetriaminetetraacetate and containing a diphenylcyclohexyl serum albumin binding group (L1) is described and the coordination chemistry and biophysical properties of its Gd(III) complex Gd-L1 are reported. The Gd(III) complex of the diethylenetriaminepentaacetate analogue of the ligand described here (L2) is the MRI contrast agent MS-325. The effect of converting an acetate to a methyl group on metal-ligand stability, hydration number, water-exchange rate, relaxivity, and binding to the protein human serum albumin (HSA) is explored.

View Article and Find Full Text PDF

Electron paramagnetic resonance (EPR) spectroscopy has been used to structurally characterize the copper-binding site in CusF protein from Escherichia coli. The EPR spectra indicate a single type II copper center with parameters typical for nitrogen and oxygen ligands (A(parallel) approximately 200 G, g(parallel) approximately 2.186, g(perpendicular) approximately 2.

View Article and Find Full Text PDF

A single-crystal study of cis,trans-(L-N2S2)MoVOCl (1) doped into cis,trans-(N2S2)MoVIO2 (3) has enabled the g-tensor of 1 and its orientation with respect to the molecular structure to be determined. The EPR parameters (g1, 2.004; g2, 1.

View Article and Find Full Text PDF

A 17O ESEEM investigation of the high pH form of chicken sulfite oxidase using hyperfine sublevel correlation (HYSCORE) spectroscopy at 29.25 GHz has revealed a new type of exchangeable 17O ligand that is characterized by a significantly smaller hyperfine interaction ( approximately 5 MHz) than that previously detected by CW EPR. This new type of exchangeable oxygen ligand is assigned to the axial oxo group of the Mo(V) center.

View Article and Find Full Text PDF

The ion-nuclear distance of Gd(III) to a coordinated water proton, r(Gd)(-)(H), is central to the understanding of the efficacy of gadolinium-based MRI contrast agents. The dipolar relaxation mechanism operative for contrast agents has a 1/r(6) dependence. Estimates in the literature for this distance span 0.

View Article and Find Full Text PDF