We report on fast beam-scanning stimulated-emission-depletion (STED) microscopy in the visible range using for resolution enhancement compact, low cost and turn-key continuous wave (CW) fiber lasers emitting at 592 nm. Spatial resolutions of 35 to 65 nm in the focal plane are shown for various samples including fluorescent nanoparticles, immuno-stained cells with a non-exhaustive selection of 5 commonly used organic fluorescent markers, and living cells expressing the yellow fluorescent protein Citrine. The potential of the straightforward combination of CW-STED and fast beam scanning is illustrated in a movie of the endoplasmic reticulum (ER) of a living cell, composed of 100 frames (6 microm x 12 microm), each of them acquired in a time shorter than 0.
View Article and Find Full Text PDFExperiments based on fluorescence detection are limited by the population of the fluorescence marker's long-lived dark triplet state, leading to pronounced photobleaching reactions and blinking which reduces the average fluorescence signal obtained per time interval. By irradiation with a second, red-shifted laser line, we initiate reverse intersystem crossing (ReISC) which enhances the fluorescence signal of common fluorophores up to a factor of 14. The reverse intersystem crossing from the triplet state back to the singlet system is achieved by photoexcitation to higher-excited triplet states, which are, however, prone to photobleaching.
View Article and Find Full Text PDF