Publications by authors named "Arnold E Pfahnl"

Angiotensin II (ANG II) increases oxidative stress and is associated with increased risk of sudden cardiac death. The cardiac Na(+) channel promoter contains elements that confer redox sensitivity. We tested the hypothesis that ANG II-mediated oxidative stress may modulate Na(+) channel current through altering channel transcription.

View Article and Find Full Text PDF

Background: Brugada syndrome is a rare, autosomal-dominant, male-predominant form of idiopathic ventricular fibrillation characterized by a right bundle-branch block and ST elevation in the right precordial leads of the surface ECG. Mutations in the cardiac Na+ channel SCN5A on chromosome 3p21 cause approximately 20% of the cases of Brugada syndrome; most mutations decrease inward Na+ current, some by preventing trafficking of the channels to the surface membrane. We previously used positional cloning to identify a new locus on chromosome 3p24 in a large family with Brugada syndrome and excluded SCN5A as a candidate gene.

View Article and Find Full Text PDF

Heart failure (HF) is associated with reduced cardiac Na+ channel (SCN5A) current. We hypothesized that abnormal transcriptional regulation of this ion channel during HF could help explain the reduced current. Using human hearts explanted at the transplantation, we have identified 3 human C-terminal SCN5A mRNA splicing variants predicted to result in truncated, nonfunctional channels.

View Article and Find Full Text PDF

Background: Brugada and long QT type 3 syndromes are linked to sodium channel mutations and clinically cause arrhythmias that lead to sudden death. We have identified a novel threonine-to-isoleucine missense mutation at position 353 (T353I) adjacent to the pore-lining region of domain I of the cardiac sodium channel (SCN5A) in a family with Brugada syndrome. Both male and female carriers are symptomatic at young ages, have typical Brugada-type electrocardiogram changes, and have relatively normal corrected QT intervals.

View Article and Find Full Text PDF

By directed differentiation using the hanging drop method, cardiomyocytes (CMs) can be derived from mouse embryonic stem cells. These spontaneously active CMs can then be isolated from the embryoid bodies and studied electrophysiologically for analysis of arrhythmic potential. This method is particularly advantangeous for studying CMs derived from genetically modified stem cells, in which mutations result in embryonic lethality.

View Article and Find Full Text PDF