Complexity is an important metric for appropriate characterization of different classes of irregular signals, observed in the laboratory or in nature. The literature is already rich in the description of such measures using a variety of entropy and disequilibrium measures, separately or in combination. Chaotic signal was given prime importance in such studies while no such measure was proposed so far, how complex were the extreme events when compared to non-extreme chaos.
View Article and Find Full Text PDFSince Galileo's time, the pendulum has evolved into one of the most exciting physical objects in mathematical modeling due to its vast range of applications for studying various oscillatory dynamics, including bifurcations and chaos, under various interests. This well-deserved focus aids in comprehending various oscillatory physical phenomena that can be reduced to the equations of the pendulum. The present article focuses on the rotational dynamics of the two-dimensional forced-damped pendulum under the influence of the ac and dc torque.
View Article and Find Full Text PDFDesigning navigation strategies for search-time optimization remains of interest in various interdisciplinary branches in science. Herein, we focus on active Brownian walkers in noisy and confined environments, which are mediated by one such autonomous strategy, namely stochastic resetting. As such, resetting stops the motion and compels the walkers to restart from the initial configuration intermittently.
View Article and Find Full Text PDFThe role of topological heterogeneity in the origin of extreme events in a network is investigated here. The dynamics of the oscillators associated with the nodes are assumed to be identical and influenced by mean-field repulsive interactions. An interplay of topological heterogeneity and the repulsive interaction between the dynamical units of the network triggers extreme events in the nodes when each node succumbs to such events for discretely different ranges of repulsive coupling.
View Article and Find Full Text PDFHow long does a trajectory take to reach a stable equilibrium point in the basin of attraction of a dynamical system? This is a question of quite general interest and has stimulated a lot of activities in dynamical and stochastic systems where the metric of this estimation is often known as the transient or first passage time. In nonlinear systems, one often experiences long transients due to their underlying dynamics. We apply resetting or restart, an emerging concept in statistical physics and stochastic process, to mitigate the detrimental effects of prolonged transients in deterministic dynamical systems.
View Article and Find Full Text PDFWe investigate a low-dimensional slow-fast model to understand the dynamical origin of El Niño southern oscillation. A close inspection of the system dynamics using several bifurcation plots reveals that a sudden large expansion of the attractor occurs at a critical system parameter via a type of interior crisis. This interior crisis evolves through merging of a cascade of period-doubling and period-adding bifurcations that leads to the origin of occasional amplitude-modulated extremely large events.
View Article and Find Full Text PDFWe notice signatures of extreme eventslike behavior in a laser based Ikeda map. The trajectory of the system occasionally travels a large distance away from the bounded chaotic region, which appears as intermittent spiking events in the temporal dynamics. The large spiking events satisfy the conditions of extreme events as usually observed in dynamical systems.
View Article and Find Full Text PDF