We propose a protocol for the amplified detection of low-intensity terahertz radiation using Rydberg tweezer arrays. The protocol offers single photon sensitivity together with a low dark count rate. It is split into two phases: during a sensing phase, it harnesses strong terahertz-range transitions between highly excited Rydberg states to capture individual terahertz photons.
View Article and Find Full Text PDFAnalog quantum simulations with Rydberg atoms in optical tweezers routinely address strongly correlated many-body problems due to the hardware-efficient implementation of the Hamiltonian. Yet, their generality is limited, and flexible Hamiltonian-design techniques are needed to widen the scope of these simulators. Here we report on the realization of spatially tunable interactions for XYZ models implemented by two-color near-resonant coupling to Rydberg pair states.
View Article and Find Full Text PDF