We used a robotic-based THz imaging system to investigate the sub-surface structure of an artificially mummified ancient Egyptian human left hand. The results obtained are compared to the results of a conventional CT and a micro-CT scan. Using such a robotic THz system promises new insights into the sub-surface structure of human remains.
View Article and Find Full Text PDFWe investigate the performance of terahertz (THz) quasi time-domain systems (QTDS) driven by electrically pulsed multi-mode laser diodes operating at 659 nm. We show that at the same average output power, a reduced duty cycle considerably increases the obtained bandwidth. In the presented experiment, the high frequency performance is improved by 50 dB/THz.
View Article and Find Full Text PDFWe present a fiber-coupled terahertz quasi time-domain spectroscopy system driven by a laser with a central wavelength of 1550 nm. By using a commercially available multimode laser diode in combination with state-of-the-art continuous wave antennas, a bandwidth of more than 1.8 THz is achieved.
View Article and Find Full Text PDFAn extensive investigation of the origin and the impact of periodic sampling errors of terahertz time-domain spectroscopy systems is given. We present experimental findings and compare them to a theoretical model which is developed in this work. Special attention is given to the influence on the extraction of the refractive index from measurements.
View Article and Find Full Text PDFWe present a terahertz quasi time domain spectroscopy (QTDS) system setup which is improved regarding cost and compactness. The diode laser is mounted directly onto the optical delay line, making the optical setup more compact. The system is operated using a Raspberry Pi and an additional sound card.
View Article and Find Full Text PDF